Holography and the MERA

The AdS/MERA correspondence has been making the rounds of the blogosphere with nice posts by Scott Aaronson and Sean Carroll, so let’s take a look at the topic here at Quantum Frontiers.

The question of how to formulate a quantum theory of gravity is a long-standing open problem in theoretical physics. Somewhat recently, an idea that has gained a lot of traction (and that Spiros has blogged about before) is emergence. This is the idea that space and time may emerge from some more fine-grained quantum objects and their interactions. If we could understand how classical spacetime emerges from an underlying quantum system, then it’s not too much of a stretch to hope that this understanding would give us insight into the full quantum nature of spacetime.

One type of emergence is exhibited in holography, which is the idea that certain (D+1)-dimensional systems with gravity are exactly equivalent to D-dimensional quantum theories without gravity. (Note that we’re calling time a dimension here. For example, you would say that on a day-to-day basis we experience D = 4 dimensions.) In this case, that extra +1 dimension and the concomitant gravitational dynamics are emergent phenomena.

A nice aspect of holography is that it is explicitly realized by the AdS/CFT correspondence. This correspondence proposes that a particular class of spacetimes—ones that asymptotically look like anti-de Sitter space, or AdS—are equivalent to states of a particular type of quantum system—a conformal field theory, or CFT. A convenient visualization is to draw the AdS spacetime as a cylinder, where time marches forward as you move up the cylinder and different slices of the cylinder correspond to snapshots of space at different instants of time. Conveniently, in this picture you can think of the corresponding CFT as living on the boundary of the cylinder, which, you should note, has one less dimension than the “bulk” inside the cylinder.

board

Even within this nice picture of holography that we get from the AdS/CFT correspondence, there is a question of how exactly do CFT, or boundary quantities map onto quantities in the AdS bulk. This is where a certain tool from quantum information theory called tensor networks has recently shown a lot of promise.

A tensor network is a way to efficiently represent certain states of a quantum system. Moreover, they have nice graphical representations which look something like this:

 mera

Beni discussed one type of tensor network in his post on holographic codes. In this post, let’s discuss the tensor network shown above, which is known as the Multiscale Entanglement Renormalization Ansatz, or MERA.

The MERA was initially developed by Guifre Vidal and Glen Evenbly as an efficient approximation to the ground state of a CFT. Roughly speaking, in the picture of a MERA above, one starts with a simple state at the centre, and as you move outward through the network, the MERA tells you how to build up a CFT state which lives on the legs at the boundary. The MERA caught the eye of Brian Swingle, who noticed that it looks an awfully lot like a discretization of a slice of the AdS cylinder shown above. As such, it wasn’t a preposterously big leap to suggest a possible “AdS/MERA correspondence.” Namely, perhaps it’s more than a simple coincidence that a MERA both encodes a CFT state and resembles a slice of AdS. Perhaps the MERA gives us the tools that are required to construct a map between the boundary and the bulk!

So, how seriously should one take the possibility of an AdS/MERA correspondence? That’s the question that my colleagues and I addressed in a recent paper. Essentially, there are several properties that a consistent holographic theory should satisfy in both the bulk and the boundary. We asked whether these properties are still simultaneously satisfied in a correspondence where the bulk and boundary are related by a MERA.

What we found was that you invariably run into inconsistencies between bulk and boundary physics, at least in the simplest construals of what an AdS/MERA correspondence might be. This doesn’t mean that there is no hope for an AdS/MERA correspondence. Rather, it says that the simplest approach will not work. For a good correspondence, you would need to augment the MERA with some additional structure, or perhaps consider different tensor networks altogether. For instance, the holographic code features a tensor network which hints at a possible bulk/boundary correspondence, and the consistency conditions that we proposed are a good list of checks for Beni and company as they work out the extent to which the code can describe holographic CFTs. Indeed, a good way to summarize how our work fits into the picture of quantum gravity alongside holography and tensors networks is by saying that it’s nice to have good signposts on the road when you don’t have a map.

Hello, my name is QUANTUM MASTER EQUATION

“Why does it have that name?”

I’ve asked in seminars, in lectures, in offices, and at group meetings. I’ve asked about physical conjectures, about theorems, and about mathematical properties.

“I don’t know.” Lecturers have shrugged. “It’s just a name.”

https://en.wikipedia.org/wiki/Name_tag

This spring, I asked about master equations. I thought of them as tools used in statistical mechanics, the study of vast numbers of particles. We can’t measure vast numbers of particles, so we can’t learn about stat-mech systems everything one might want to know. The magma beneath Santorini, for example, consists of about 1024 molecules. Good luck measuring every one.

http://thewatchers.adorraeli.com/2012/04/18/the-santorini-volcano-caldera-is-awake-again-and-rapidly-deforming/

Imagine, as another example, using a quantum computer to solve a problem. We load information by initializing the computer to a certain state: We orient the computer’s particles in certain directions. We run a program, then read out the output.

Suppose the computer sits on a tabletop, exposed to the air like leftover casserole no one wants to save for tomorrow. Air molecules bounce off the computer, becoming entangled with the hardware. This entanglement, or quantum correlation, alters the computer’s state, just as flies alter a casserole.* To understand the computer’s output—which depends on the state, which depends on the air—we must have a description of the air. But we can’t measure all those air molecules, just as we can’t measure all the molecules in Santorini’s magma.

http://www.savingyoudinero.com/2012/06/05/chicken-fajita-casserole/

We can package our knowledge about the computer’s state into a mathematical object, called a density operator, labeled by ρ(t). A quantum master equation describes how ρ(t) changes. I had no idea, till this spring, why we call master equations “master equations.” Had someone named “John Master” invented them? Had the inspiration for the Russell Crowe movie Master and Commander? Or the Igor who lisps, “Yeth, mathter” in adaptations of Frankenstein?

http://www.wallcoo.net/movie/master_and_commander/html/image4.html

Jenia Mozgunov, a fellow student and Preskillite, proposed an answer: Using master equations, we can calculate how averages of observable properties change. Imagine describing a laser, a cavity that spews out light. A master equation reveals how the average number of photons (particles of light) in the cavity changes. We want to predict these averages because experimentalists measure them. Because master equations spawn many predictions—many equations—they merit the label “master.”

Jenia’s hypothesis appealed to me, but I wanted certainty. I wanted Truth. I opened my laptop and navigated to Facebook.

“Does anyone know,” I wrote in my status, “why master equations are called ‘master equations’?”

Ian Durham, a physicist at St. Anselm College, cited Tom Moore’s Six Ideas that Shaped Physics. Most physics problems, Ian wrote, involve “some overarching principle.” Example principles include energy conservation and invariance under discrete translations (the system looks the same after you step in some direction). A master equation encapsulates this principle.

Ian’s explanation sounded sensible. But fewer people “liked” his reply on Facebook than “liked” a quip by a college friend: Master equations deserve their name because “[t]hey didn’t complete all the requirements for the doctorate.”

My advisor, John Preskill, dug through two to three books, one set of lecture notes, one German Wikipedia page, one to two articles, and Google Scholar. He concluded that Nordsieck, Lamb, and Uhlenbeck coined “master equation.” According to a 1940 paper of theirs,** “When the probabilities of the elementary processes are known, one can write down a continuity equation for W [a set of probabilities], from which all other equations can be derived and which we will call therefore the ‘master’ equation.”

“Are you sure you were meant to be a physicist,” I asked John, “rather than a historian?”

“Procrastination is a powerful motivator,” he replied.

Lecturers have shrugged at questions about names. Then they’ve paused, pondered, and begun, “I guess because…” Theorems and identities derive their names from symmetries, proof techniques, geometric illustrations, and applications to problems I’d thought unrelated. A name taught me about uses for master equations. Names reveal physics I wouldn’t learn without asking about names. Names aren’t just names. They’re lamps and guides.

Pity about the origin of “master equation,” though. I wish an Igor had invented them.

http://fashions-cloud.com/pages/y/young-frankenstein-igor-brain/

*Apologies if I’ve spoiled your appetite.

**A. Nordsieck, W. E. Lamb, and G. E. Uhlenbeck, “On the theory of cosmic-ray showers I,” Physica 7, 344-60 (1940), p. 353.

Mingling stat mech with quantum info in Maryland

I felt like a yoyo.

I was standing in a hallway at the University of Maryland. On one side stood quantum-information theorists. On the other side stood statistical-mechanics scientists.* The groups eyed each other, like Jets and Sharks in West Side Story, except without fighting or dancing.

This March, the groups were generous enough to host me for a visit. I parked first at QuICS, the Joint Center for Quantum Information and Computer Science. Established in October 2014, QuICS had moved into renovated offices the previous month. QuICSland boasts bright colors, sprawling armchairs, and the scent of novelty. So recently had QuICS arrived that the restroom had not acquired toilet paper (as I learned later than I’d have preferred).

Interaction space

Photo credit: QuICS

From QuICS, I yoyo-ed to the chemistry building, where Chris Jarzynski’s group studies fluctuation relations. Fluctuation relations, introduced elsewhere on this blog, describe out-of-equilibrium systems. A system is out of equilibrium if large-scale properties of it change. Many systems operate out of equilibrium—boiling soup, combustion engines, hurricanes, and living creatures, for instance. Physicists want to describe nonequilibrium processes but have trouble: Living creatures are complicated. Hence the buzz about fluctuation relations.

My first Friday in Maryland, I presented a seminar about quantum voting for QuICS. The next Tuesday, I was to present about one-shot information theory for stat-mech enthusiasts. Each week, the stat-mech crowd invites its speaker to lunch. Chris Jarzynski recommended I invite QuICS. Hence the Jets-and-Sharks tableau.

“Have you interacted before?” I asked the hallway.

“No,” said a voice. QuICS hadn’t existed till last fall, and some QuICSers hadn’t had offices till the previous month.**

Silence.

“We’re QuICS,” volunteered Stephen Jordan, a quantum-computation theorist, “the Joint Center for Quantum Information and Computer Science.”

So began the mingling. It continued at lunch, which we shared at three circular tables we’d dragged into a chain. The mingling continued during the seminar, as QuICSers sat with chemists, materials scientists, and control theorists. The mingling continued the next day, when QuICSer Alexey Gorshkov joined my discussion with the Jarzynski group. Back and forth we yoyo-ed, between buildings and topics.

“Mingled,” said Yigit Subasi. Yigit, a postdoc of Chris’s, specialized in quantum physics as a PhD student. I’d asked how he thinks about quantum fluctuation relations. Since Chris and colleagues ignited fluctuation-relation research, theorems have proliferated like vines in a jungle. Everyone and his aunty seems to have invented a fluctuation theorem. I canvassed Marylanders for bushwhacking tips.

Imagine, said Yigit, a system whose state you know. Imagine a gas, whose temperature you’ve measured, at equilibrium in a box. Or imagine a trapped ion. Begin with a state about which you have information.

Imagine performing work on the system “violently.” Compress the gas quickly, so the particles roil. Shine light on the ion. The system will leave equilibrium. “The information,” said Yigit, “gets mingled.”

Imagine halting the compression. Imagine switching off the light. Combine your information about the initial state with assumptions and physical laws.*** Manipulate equations in the right way, and the information might “unmingle.” You might capture properties of the violence in a fluctuation relation.

2 photos - cut

With Zhiyue Lu and Andrew Maven Smith of Chris Jarzynski’s group (left) and with QuICSers (right)

I’m grateful to have exchanged information in Maryland, to have yoyo-ed between groups. We have work to perform together. I have transformations to undergo.**** Let the unmingling begin.

With gratitude to Alexey Gorshkov and QuICS, and to Chris Jarzynski and the University of Maryland Department of Chemistry, for their hospitality, conversation, and camaraderie.

*Statistical mechanics is the study of systems that contain vast numbers of particles, like the air we breathe and white dwarf stars. I harp on about statistical mechanics often.

**Before QuICS’s birth, a future QuICSer had collaborated with a postdoc of Chris’s on combining quantum information with fluctuation relations.

***Yes, physical laws are assumptions. But they’re glorified assumptions.

****Hopefully nonviolent transformations.

Quantum gravity from quantum error-correcting codes?

The lessons we learned from the Ryu-Takayanagi formula, the firewall paradox and the ER=EPR conjecture have convinced us that quantum information theory can become a powerful tool to sharpen our understanding of various problems in high-energy physics. But, many of the concepts utilized so far rely on entanglement entropy and its generalizations, quantities developed by Von Neumann more than 60 years ago. We live in the 21st century. Why don’t we use more modern concepts, such as the theory of quantum error-correcting codes?

In a recent paper with Daniel Harlow, Fernando Pastawski and John Preskill, we have proposed a toy model of the AdS/CFT correspondence based on quantum error-correcting codes. Fernando has already written how this research project started after a fateful visit by Daniel to Caltech and John’s remarkable prediction in 1999. In this post, I hope to write an introduction which may serve as a reader’s guide to our paper, explaining why I’m so fascinated by the beauty of the toy model.

This is certainly a challenging task because I need to make it accessible to everyone while explaining real physics behind the paper. My personal philosophy is that a toy model must be as simple as possible while capturing key properties of the system of interest. In this post, I will try to extract some key features of the AdS/CFT correspondence and construct a toy model which captures these features. This post may be a bit technical compared to other recent posts, but anyway, let me give it a try…

Bulk locality paradox and quantum error-correction

The AdS/CFT correspondence says that there is some kind of correspondence between quantum gravity on (d+1)-dimensional asymptotically-AdS space and d-dimensional conformal field theory on its boundary. But how are they related?

The AdS-Rindler reconstruction tells us how to “reconstruct” a bulk operator from boundary operators. Consider a bulk operator \phi and a boundary region A on a hyperbolic space (in other words, a negatively-curved plane). On a fixed time-slice, the causal wedge of A is a bulk region enclosed by the geodesic line of A (a curve with a minimal length). The AdS-Rindler reconstruction says that \phi can be represented by some integral of local boundary operators supported on A if and only if \phi is contained inside the causal wedge of A. Of course, there are multiple regions A,B,C,… whose causal wedges contain \phi, and the reconstruction should work for any such region.

fig_Rindler

The Rindler-wedge reconstruction

That a bulk operator in the causal wedge can be reconstructed by local boundary operators, however, leads to a rather perplexing paradox in the AdS/CFT correspondence. Consider a bulk operator \phi at the center of a hyperbolic space, and split the boundary into three pieces, A, B, C. Then the geodesic line for the union of BC encloses the bulk operator, that is, \phi is contained inside the causal wedge of BC. So, \phi can be represented by local boundary operators supported on BC. But the same argument applies to AB and CA, implying that the bulk operator \phi corresponds to local boundary operators which are supported inside AB, BC and CA simultaneously. It would seem then that the bulk operator \phi must correspond to an identity operator times a complex phase. In fact, similar arguments apply to any bulk operators, and thus, all the bulk operators must correspond to identity operators on the boundary. Then, the AdS/CFT correspondence seems so boring…

fig_paradox

The bulk operator at the center is contained inside causal wedges of BC, AB, AC. Does this mean that the bulk operator corresponds to an identity operator on the boundary?

Almheiri, Dong and Harlow have recently proposed an intriguing way of reconciling this paradox with the AdS/CFT correspondence. They proposed that the AdS/CFT correspondence can be viewed as a quantum error-correcting code. Their idea is as follows. Instead of \phi corresponding to a single boundary operator, \phi may correspond to different operators in different regions, say O_{AB}, O_{BC}, O_{CA} living in AB, BC, CA respectively. Even though O_{AB}, O_{BC}, O_{CA} are different boundary operators, they may be equivalent inside a certain low energy subspace on the boundary.

This situation resembles the so-called quantum secret-sharing code. The quantum information at the center of the bulk cannot be accessed from any single party A, B or C because \phi does not have representation on A, B, or C. It can be accessed only if multiple parties cooperate and perform joint measurements. It seems that a quantum secret is shared among three parties, and the AdS/CFT correspondence somehow realizes the three-party quantum secret-sharing code!

Entanglement wedge reconstruction?

Recently, causal wedge reconstruction has been further generalized to the notion of entanglement wedge reconstruction. Imagine we split the boundary into four pieces A,B,C,D such that A,C are larger than B,D. Then the geodesic lines for A and C do not form the geodesic line for the union of A and C because we can draw shorter arcs by connecting endpoints of A and C, which form the global geodesic line. The entanglement wedge of AC is a bulk region enclosed by this global geodesic line of AC. And the entanglement wedge reconstruction predicts that \phi can be represented as an integral of local boundary operators on AC if and only if \phi is inside the entanglement wedge of AC [1].

fig_reconstruction

Causal wedge vs entanglement wedge.

Building a minimal toy model; the five-qubit code

Okay, now let’s try to construct a toy model which admits causal and entanglement wedge reconstructions of bulk operators. Because I want a simple toy model, I take a rather bold assumption that the bulk consists of a single qubit while the boundary consists of five qubits, denoted by A, B, C, D, E.

fig_minimal

Reconstruction of a bulk operator in the “minimal” model.

What does causal wedge reconstruction teach us in this minimal setup of five and one qubits? First, we split the boundary system into two pieces, ABC and DE and observe that the bulk operator \phi is contained inside the causal wedge of ABC. From the rotational symmetries, we know that the bulk operator \phi must have representations on ABC, BCD, CDE, DEA, EAB. Next, we split the boundary system into four pieces, AB, C, D and E, and observe that the bulk operator \phi is contained inside the entanglement wedge of AB and D. So, the bulk operator \phi must have representations on ABD, BCE, CDA, DEB, EAC. In summary, we have the following:

  • The bulk operator must have representations on R if and only if R contains three or more qubits.

This is the property I want my toy model to possess.

What kinds of physical systems have such a property? Luckily, we quantum information theorists know the answer; the five-qubit code. The five-qubit code, proposed here and here, has an ability to encode one logical qubit into five-qubit entangled states and corrects any single qubit error. We can view the five-qubit code as a quantum encoding isometry from one-qubit states to five-qubit states:

\alpha | 0 \rangle + \beta | 1 \rangle \rightarrow \alpha | \tilde{0} \rangle + \beta | \tilde{1} \rangle

where | \tilde{0} \rangle and | \tilde{1} \rangle are the basis for a logical qubit. In quantum coding theory, logical Pauli operators \bar{X} and \bar{Z} are Pauli operators which act like Pauli X (bit flip) and Z (phase flip) on a logical qubit spanned by | \tilde{0} \rangle and | \tilde{1} \rangle. In the five-qubit code, for any set of qubits R with volume 3, some representations of logical Pauli X and Z operators, \bar{X}_{R} and \bar{Z}_{R}, can be found on R. While \bar{X}_{R} and \bar{X}_{R'} are different operators for R \not= R', they act exactly in the same manner on the codeword subspace spanned by | \tilde{0} \rangle and | \tilde{1} \rangle. This is exactly the property I was looking for.

Holographic quantum error-correcting codes

We just found possibly the smallest toy model of the AdS/CFT correspondence, the five-qubit code! The remaining task is to construct a larger model. For this goal, we view the encoding isometry of the five-qubit code as a six-leg tensor. The holographic quantum code is a network of such six-leg tensors covering a hyperbolic space where each tensor has one open leg. These open legs on the bulk are interpreted as logical input legs of a quantum error-correcting code while open legs on the boundary are identified as outputs where quantum information is encoded. Then the entire tensor network can be viewed as an encoding isometry.

The six-leg tensor has some nice properties. Imagine we inject some Pauli operator into one of six legs in the tensor. Then, for any given choice of three legs, there always exists a Pauli operator acting on them which counteracts the effect of the injection. An example is shown below:

fig_pushing

In other words, if an operator is injected from one tensor leg, one can “push” it into other three tensor legs.

Finally, let’s demonstrate causal wedge reconstruction of bulk logical operators. Pick an arbitrary open tensor leg in the bulk and inject some Pauli operator into it. We can “push” it into three tensor legs, which are then injected into neighboring tensors. By repeatedly pushing operators to the boundary in the network, we eventually have some representation of the operator living on a piece of boundary region A. And the bulk operator is contained inside the causal wedge of A. (Here, the length of the curve can be defined as the number of tensor legs cut by the curve). You can also push operators into the boundary by choosing different tensor legs which lead to different representations of a logical operator. You can even have a rather exotic representation which is supported non-locally over two disjoint pieces of the boundary, realizing entanglement wedge reconstruction.

fig_example

Causal wedge and entanglement wedge reconstruction.

What’s next?

This post is already pretty long and I need to wrap it up…

Shor’s quantum factoring algorithm is a revolutionary invention which opened a whole new research avenue of quantum information science. It is often forgotten, but the first quantum error-correcting code is another important invention by Peter Shor (and independently by Andrew Steane) which enabled a proof that the quantum computation can be performed fault-tolerantly. The theory of quantum error-correcting codes has found interesting applications in studies of condensed matter physics, such as topological phases of matter. Perhaps then, quantum coding theory will also find applications in high energy physics.

Indeed, many interesting open problems are awaiting us. Is entanglement wedge reconstruction a generic feature of tensor networks? How do we describe black holes by quantum error-correcting codes? Can we build a fast scrambler by tensor networks? Is entanglement a wormhole (or maybe a perfect tensor)? Can we resolve the firewall paradox by holographic quantum codes? Can the physics of quantum gravity be described by tensor networks? Or can the theory of quantum gravity provide us with novel constructions of quantum codes?

I feel that now is the time for quantum information scientists to jump into the research of black holes. We don’t know if we will be burned by a firewall or not … , but it is worth trying.



1. Whether entanglement wedge reconstruction is possible in the AdS/CFT correspondence or not still remains controversial. In the spirit of the Ryu-Takayanagi formula which relates entanglement entropy to the length of a global geodesic line, entanglement wedge reconstruction seems natural. But that a bulk operator can be reconstructed from boundary operators on two separate pieces A and C non-locally sounds rather exotic. In our paper, we constructed a toy model of tensor networks which allows both causal and entanglement wedge reconstruction in many cases. For details, see our paper. 

Putting back the pieces of a broken hologram

It is Monday afternoon and the day seems to be a productive one, if not yet quite memorable. As I revise some notes on my desk, Beni Yoshida walks into my office to remind me that the high-energy physics seminar is about to start. I hesitate, somewhat apprehensive of the near-certain frustration of being lost during the first few minutes of a talk in an unfamiliar field. I normally avoid such a situation, but in my email I find John’s forecast for an accessible talk by Daniel Harlow and a title with three words I can cling onto. “Quantum error correction” has driven my curiosity for the last seven years. The remaining acronyms in the title will become much more familiar in the four months to come.

Most of you are probably familiar with holograms, these shiny flat films representing a 3D object from essentially any desired angle. I find it quite remarkable how all the information of a 3D object can be printed on an essentially 2D film. True, the colors are not represented as faithfully as in a traditional photograph, but it looks as though we have taken a photograph from every possible angle! The speaker’s main message that day seemed even more provocative than the idea of holography itself. Even if the hologram is broken into pieces, and some of these are lost, we may still use the remaining pieces to recover parts of the 3D image or even the full thing given a sufficiently large portion of the hologram. The 3D object is not only recorded in 2D, it is recorded redundantly!

Left to right: Beni Yoshida, Aleksander Kubica, Aidan Chatwin-Davies and Fernando Pastawski discussing holographic codes.

Left to right: Beni Yoshida, Aleksander Kubica, Aidan Chatwin-Davies and Fernando Pastawski discussing holographic codes.

Half way through Daniel’s exposition, Beni and I exchange a knowing glance. We recognize a familiar pattern from our latest project. A pattern which has gained the moniker of “cleaning lemma” within the quantum information community which can be thought of as a quantitative analog of reconstructing the 3D image from pieces of the hologram. Daniel makes connections using a language that we are familiar with. Beni and I discuss what we have understood and how to make it more concrete as we stride back through campus. We scribble diagrams on the whiteboard and string words such as tensor, encoder, MERA and negative curvature into our discussion. An image from the web gives us some intuition on the latter. We are onto something. We have a model. It is simple. It is new. It is exciting.

Poincare projection of a regular pentagon tiling of negatively curved space.

Poincare projection of a regular pentagon tiling of negatively curved space.

Food has not come our way so we head to my apartment as we enthusiastically continue our discussion. I can only provide two avocados and some leftover pasta but that is not important, we are sharing the joy of insight. We arrange a meeting with Daniel to present our progress. By Wednesday Beni and I introduce the holographic pentagon code at the group meeting. A core for a new project is already there, but we need some help to navigate the high-energy waters. Who better to guide us in such an endeavor than our mentor, John Preskill, who recognized the importance of quantum information in Holography as early as 1999 and has repeatedly proven himself a master of both trades.

“I feel that the idea of holography has a strong whiff of entanglement—for we have seen that in a profoundly entangled state the amount of information stored locally in the microscopic degrees of freedom can be far less than we would naively expect. For example, in the case of the quantum error-correcting codes, the encoded information may occupy a small ‘global’ subspace of a much larger Hilbert space. Similarly, the distinct topological phases of a fractional quantum Hall system look alike locally in the bulk, but have distinguishable edge states at the boundary.”
-J. Preskill, 1999

As Beni puts it, the time for using modern quantum information tools in high-energy physics has come. By this he means quantum error correction and maybe tensor networks. First privately, then more openly, we continue to sharpen and shape our project. Through conferences, Skype calls and emails, we further our discussion and progressively shape ideas. Many speculations mature to conjectures and fall victim to counterexamples. Some stand the test of simulations or are even promoted to theorems by virtue of mathematical proofs.

Beni Yoshida presenting our work at a quantum entanglement conference in Puerto Rico.

Beni Yoshida presenting our work at a quantum entanglement conference in Puerto Rico.

I publicly present the project for the first time at a select quantum information conference in Australia. Two months later, after a particularly intense writing, revising and editing process, the article is almost complete. As we finalize the text and relabel the figures, Daniel and Beni unveil our work to quantum entanglement experts in Puerto Rico. The talks are a hit and it is time to let all our peers read about it.

You are invited to do so and Beni will even be serving a reader’s guide in an upcoming post.

Always look on the bright side…of CPTP maps.

http://www.google.com/imgres?imgurl=http://www.stmoroky.com/reviews/films/brian.jpg&imgrefurl=http://www.stmoroky.com/reviews/films/brian.htm&h=290&w=250&tbnid=ZVAVf4ZX_zMISM:&zoom=1&docid=D5VZDH_bepBS0M&hl=en&ei=3bLfVIiYOoSpogS6toLYCQ&tbm=isch&ved=0CFEQMygYMBg

Once upon a time, I worked with a postdoc who shaped my views of mathematical physics, research, and life. Each week, I’d email him a PDF of the calculations and insights I’d accrued. He’d respond along the lines of, “Thanks so much for your notes. They look great! I think they’re mostly correct; there are just a few details that might need fixing.” My postdoc would point out the “details” over espresso, at a café table by a window. “Are you familiar with…?” he’d begin, and pull out of his back pocket some bit of math I’d never heard of. My calculations appeared to crumble like biscotti.

Some of the math involved CPTP maps. “CPTP” stands for a phrase little more enlightening than the acronym: “completely positive trace-preserving”. CPTP maps represent processes undergone by quantum systems. Imagine preparing some system—an electron, a photon, a superconductor, etc.—in a state I’ll call “\rho“. Imagine turning on a magnetic field, or coupling one electron to another, or letting the superconductor sit untouched. A CPTP map, labeled as \mathcal{E}, represents every such evolution.

“Trace-preserving” means the following: Imagine that, instead of switching on the magnetic field, you measured some property of \rho. If your measurement device (your photodetector, spectrometer, etc.) worked perfectly, you’d read out one of several possible numbers. Let p_i denote the probability that you read out the i^{\rm{th}} possible number. Because your device outputs some number, the probabilities sum to one: \sum_i p_i = 1.  We say that \rho “has trace one.” But you don’t measure \rho; you switch on the magnetic field. \rho undergoes the process \mathcal{E}, becoming a quantum state \mathcal{E(\rho)}. Imagine that, after the process ended, you measured a property of \mathcal{E(\rho)}. If your measurement device worked perfectly, you’d read out one of several possible numbers. Let q_a denote the probability that you read out the a^{\rm{th}} possible number. The probabilities sum to one: \sum_a q_a =1. \mathcal{E(\rho)} “has trace one”, so the map \mathcal{E} is “trace preserving”.

Now that we understand trace preservation, we can understand positivity. The probabilities p_i are positive (actually, nonnegative) because they lie between zero and one. Since the p_i characterize a crucial aspect of \rho, we call \rho “positive” (though we should call \rho “nonnegative”). \mathcal{E} turns the positive \rho into the positive \mathcal{E(\rho)}. Since \mathcal{E} maps positive objects to positive objects, we call \mathcal{E} “positive”. \mathcal{E} also satisfies a stronger condition, so we call such maps “completely positive.”**

So I called my postdoc. “It’s almost right,” he’d repeat, nudging aside his espresso and pulling out a pencil. We’d patch the holes in my calculations. We might rewrite my conclusions, strengthen my assumptions, or prove another lemma. Always, we salvaged cargo. Always, I learned.

I no longer email weekly updates to a postdoc. But I apply what I learned at that café table, about entanglement and monotones and complete positivity. “It’s almost right,” I tell myself when a hole yawns in my calculations and a week’s work appears to fly out the window. “I have to fix a few details.”

Am I certain? No. But I remain positive.

*Experts: “Trace-preserving” means \rm{Tr}(\rho) =1 \Rightarrow \rm{Tr}(\mathcal{E}(\rho)) = 1.

**Experts: Suppose that ρ is defined on a Hilbert space H and that E of rho is defined on H'. “Channel is positive” means Positive

To understand what “completely positive” means, imagine that our quantum system interacts with an environment. For example, suppose the system consists of photons in a box. If the box leaks, the photons interact with the electromagnetic field outside the box. Suppose the system-and-environment composite begins in a state SigmaAB defined on a Hilbert space HAB. Channel acts on the system’s part of state. Let I denote the identity operation that maps every possible environment state to itself. Suppose that Channel changes the system’s state while I preserves the environment’s state. The system-and-environment composite ends up in the state Channel SigmaAB. This state is positive, so we call Channel “completely positive”:Completely pos

Democrat plus Republican over the square-root of two

I wish I could superpose votes on Election Day.

However much I agree with Candidate A about social issues, I dislike his running mate. I lean toward Candidate B’s economic plans and C’s science-funding record, but nobody’s foreign policy impresses me. Must I settle on one candidate? May I not vote

TeXVoteClip

Now you can—at least in theory. Caltech postdoc Ning Bao and I concocted quantum elections in which voters can superpose, entangle, and create probabilistic mixtures of votes.

Previous quantum-voting work has focused on privacy and cryptography. Ning and I channeled quantum game theory. Quantum game theorists ask what happens if players in classical games, such as the Prisoner’s Dilemma, could superpose strategies and share entanglement. Quantization can change the landscape of possible outcomes.

The Prisoner’s Dilemma, for example, concerns two thugs whom the police have arrested and have isolated in separate cells. Each prisoner must decide whether to rat out the other. How much time each serves depends on who, if anyone, confesses. Since neither prisoner knows the other’s decision, each should rat to minimize his or her jail time. But both would serve less time if neither confessed. The prisoners can escape this dilemma using quantum resources.

Introducing superpositions and entanglement into games helps us understand the power of quantum mechanics. Elections involve gameplay; pundits have been feeding off Hilary Clinton’s for months. So superpositions and entanglement merit introduction into elections.

How can you model elections with quantum systems? Though multiple options exist, Ning and I followed two principles: (1) A general quantum process—a preparation procedure, an evolution, and a measurement—should model a quantum election. (2) Quantum elections should remain as true as possible to classical.

Given our quantum voting system, one can violate a quantum analogue of Arrow’s Impossibility Theorem. Arrow’s Theorem, developed by the Nobel-winning economist Kenneth Arrow during the mid-20th century, is a no-go theorem about elections: If a constitution has three innocuous-seeming properties, it’s a dictatorship. Ning and I translated the theorem as faithfully as we knew how into our quantum voting scheme. The result, dubbed the Quantum Arrow Conjecture, rang false.

Superposing (and probabilistically mixing) votes entices me for a reason that science does: I feel ignorant. I read articles and interview political junkies about national defense; but I miss out on evidence and subtleties. I read quantum-physics books and work through papers; but I miss out on known mathematical tools and physical interpretations. Not to mention tools and interpretations that humans haven’t discovered.

Science involves identifying (and diminishing) what humanity doesn’t know. Science frees me to acknowledge my ignorance. I can’t throw all my weight behind Candidate A’s defense policy because I haven’t weighed all the arguments about defense, because I don’t know all the arguments. Believing that I do would violate my job description. How could I not vote for elections that accommodate superpositions?

Though Ning and I identified applications of superpositions and entanglement, more quantum strategies might await discovery. Monogamy of entanglement, discussed elsewhere on this blog, might limit the influence voters exert on each other. Also, we quantized ordinal voting systems (in which each voter ranks candidates, as in “A above C above B”). The quantization of cardinal voting (in which each voter grades the candidates, as in “5 points to A, 3 points to C, 2 points to B”) or another voting scheme might yield more insights.

If you have such insights, drop us a line. Ideally before the presidential smack-down of 2016.