I was in awe of Wheeler. Some students thought he sucked.

I immediately changed it to…

I was in awe of Wheeler. Some students thought less of him.

And next, when I saw John write about himself,

Though I’m 59, few students seemed awed. Some thought I sucked. Maybe I did sometimes.

I massaged it into…

Though I’m 59, few students seemed awed. Some thought I was not as good. Maybe I wasn’t sometimes.

When John published the post, I read it again for any typos I might have missed. There were no typos. I felt useful! But when I saw that all mentions of *sucked *had been restored to their rightful place, I felt like an idiot. John did not fire a strongly-worded email back my way asking for an explanation as to my taking liberties with his own writing. He simply trusted that I would get the message in the comfort of my own awkwardness. It worked beautifully. John had set the tone for Quantum Frontier’s authentic voice with his very first post. It was to be personal, even if the subject matter was as scientifically hardcore as it got.

So when the time came for me to write my first post, I made it personal. I wrote about my time in Los Alamos as a postdoc, working on a problem in mathematical physics that almost broke me. It was Matt Hastings, an intellectual tornado, that helped me through these hard times. As my mentor, he didn’t say things like *Well done! Great progress!* *Good job, Spiro! *He said, *You can do this. *And when I finally did it, when I finally solved that damn problem, Matt came back to me and said: Beyond some typos, I cannot find any mistakes.* Good job, Spiro. *And it meant the world to me. The sleepless nights, the lonely days up in the Pajarito mountains of New Mexico, the times I had resolved to go work for my younger brother as a waiter in his first restaurant… those were the times that I had come upon a fork on the road and my mentor had helped me choose the path less traveled.

When the time came for me to write my next post, I ended by offering two problems for the readers to solve, with the following text as motivation:

This post is supposed to be an introduction to the insanely beautiful world of problem solving. It is not a world ruled by Kings and Queens. It is a world where commoners like you and me can become masters of their domain and even build an empire.

It has been way too long since my last “problem solving” post, so I leave you with a problem from this year’s International Math Olympiad, which took place in gorgeous Chiang Mai, Thailand. *FiverThirtyEight*‘s recent article about the dominance of the US math olympic team in this year’s competition, gives some context about the degree of difficulty of this problem:

Determine all triples (

a, b, c) of positive integers such that each of the numbers:ab-c,bc-a,ca-bis a power of two.Like Fermat’s Last Theorem, this problem is easy to describe and hard to solve. Only 5 percent of the competitors got full marks on this question, and nearly half (44 percent) got no points at all.

But, on the triumphant U.S. squad, four of the six team members nailed it.

In other words, only 1 in 20 kids in the competition solved this problem correctly and about half of the kids didn’t even know where to begin. For more perspective, each national team is comprised of the top 6 math prodigies in that country. In China, that means 6 out of something like 100 million kids. And only 3-4 of these kids solved the problem.

The coach of the US national team, Po-Shen Loh, a Caltech alum and an associate professor of mathematics at Carnegie Mellon University (give him tenure already) deserves some serious props. If you think this problem is too hard, I have this to say to you: Yes, it is. But, who cares? *You can do this.*

*Note: I will work out the solution in detail in an upcoming post, unless one of you solves it in the comments section before then!*

**Update:** Solution posted in comments below (in response to Anthony’s comment). Thank you all who posted some of the answers below. The solution is far from trivial, but I still wonder if an elegant solution exists that gives all four triples. Maybe the best solution is geometric? I hope one of you geniuses can figure that out!

]]>

I finished my burger, stuffing the last few delicious fries in my mouth, when my phone buzzed – I had mail from The Science and Entertainment Exchange, a non-profit organization funded by the National Academy of Sciences, whose purpose is to bring leading scientists in contact with Hollywood in order to elevate the level of science in the movies. I was to report to Atlanta, GA for a movie consult on a new superhero movie: *Ant-Man*. As I read halfway through the email, I grumbled to myself: *Why can’t I be the guy who works on Thor?** Who is this Ant-Man anyways?* But, in typical Hollywood fashion, the email had a happy ending: “Paul Rudd is playing Ant-Man. He may be at the meeting, but we cannot promise anything.” Marvel would cover my expenses, so I sent in my reluctant reply. It went something like this:

Dear Marvel Secret-ary Agent,

Hell yeah.

The meeting was in three days time. I would finish my visit to Queens University in Charlotte, NC and take the next flight out to Atlanta. But first, some fun and games were in order. As part of my visit to *Project Scientist’s *camp, I was invited to teach quantum mechanics to a group of forty young women, ages 11-14, all of whom were interested in science, engineering and mathematics and many of whom did not have the financial means to pursue these interests outside of the classroom. So, I went to Queens University with several copies of MinecraftEDU, the educational component to one of the most popular video games of all time: Minecraft. As I described in “Can a game teach kids quantum mechanics”, I spent the summer of 2013 designing qCraft, a modification (mod) to Minecraft that allows players to craft blocks imbued with quantum superpowers such as *quantum superposition* and *quantum entanglement*. The mod, developed in collaboration with Google and TeacherGaming, became really popular, amassing millions of downloads around the world. But it is one thing to look at statistics as a measure of success and another to look into the eyes of young women who have lost themselves in a game (qCraft is free to download and comes with an accompanying curriculum) designed to teach them such heady concepts that inspired Richard Feynman to quip: *If you think you understand quantum theory, you don’t.*

My visit to Charlotte was so wonderful that I nearly decided to cancel my trip to Atlanta in order to stay with the girls and their mentors until the end of the week. But Mr. Rudd deserved the very best science could offer in making-quantum-stuff-up, so I boarded my flight and resolved to bring *Project Scientist* to Caltech the next summer. On my way to Atlanta, I used the in-flight WiFi to do some research on Ant-Man. He was part of the original Avengers, a founding member, in fact (nice!) His name was Dr. Hank Pym. He had developed a particle, aptly named after himself, which allowed him to shrink the space between atoms (well now…) He embedded vials of that particle in a suit that allowed him to shrink to the size of an ant (of course, that makes sense.) In short, he was a mad, mad scientist. And I was called in to help his successor, Scott Lang (Paul Rudd’s character), navigate his way through *quantum land*. Holy guacamole Ant-man! How does one shrink the space between atoms? As James Kakalios, author of The Physics of Superheroes, puts it in a recent article on Nate Silver’s **FiveThirtyEight**:

We’re made of atoms, and the neighboring atoms are all touching each other. One method of changing your size that’s out: Just squeeze the atoms closer together.

…

So the other option: What determines the size of atoms anyway?

…

We can calculate this with quantum mechanics, and it turns out to be the ratio of fundamental constants: Planck’s constant and the mass of an electron and the charge of the electron and this and that. The thing that all these constants have in common is that they’re constant. They don’t change.

Wonderful. Just peachy. How am I supposed to come up with a way that will allow Ant-Man to shrink to the size of an ant, if one of the top experts in movie science magic thinks that our best bet is to somehow *change fundamental constants of nature*?

**The shrinking**

Naturally, I could not, umm, find the time last summer to read last week’s article during my flight (time travel issues), so like any young Greek of my generation who still hopes that our national debt will just go *poof*, I attacked the problem of shrinking someone’s volume without shrinking their mass *con pasión*. The answer was far from obvious… but, it was possible. If one could convert electrons into muons, the atomic radius would shrink 200 times, shrinking a human to the size of an ant without changing any of the chemical properties of the atoms (muons have the same charge as the electrons, but are 200 times heavier). The problem then was the lifetime of the muonic atoms. Muons decay into electrons in about 2 millionths of a second, on average. That is indeed a problem. Could we somehow extend the half-life of a muon about a million times? Yes, if the muon has relativistic mass close to 20 TeV (near the current energy of the Large Hadron Collider in Geneva), the effect of Einstein’s relativistic time-dilation (which is how actual high-energy muons from cosmic radiation have time to reach our detectors before decaying) would allow our hero to shrink for a few seconds at a time with high probability. To shrink beyond that, or for longer periods of time, would require knowledge of physics beyond the standard model. Which is precisely what the Mu2e experiment at Fermilab is looking at right now. It’s like Christmas for Ant-Man fans!

*So the famed Pym particle is a neutral particle that adds mass to an electron, converting it to a high-energy muon… When did I become a particle physicist? Oh well, fake it until you make it. Oh, hey, they are bringing pretzels! I love these little pretzel bites!*

**Enter Pinewood Studios
**

The flight was longer than I expected, which gave me time to think. A limo was waiting for me at the airport; I was to be taken directly to Pinewood Studios, luggage in hand and all. Once I was at my destination, I was escorted to the 3rd floor of a nondescript building, accessible only through special authorization (nice touch, Marvel). I was shown to what seemed like the main conference room, an open area with a large conference table. I expected that I would have to wait an hour before the assistant (to the) general manager showed up, so I started fiddling with my phone, making myself look busy and important. The next time I looked up, Paul Rudd was tapping my shoulder, dressed in sweats after what seemed like a training session for *The 300*. I am not sure what happened next, but Paul and I were in deep conversation about… qCraft? Someone must have told him that I was involved with designing the quantum mod for Minecraft and suddenly our roles were reversed. His son was a huge Minecraft fan and I was the celebrity in this boy’s eyes, and by parental transitivity, an associative, but highly non-commutative group action, in his dad’s eyes. I promised Paul that I would teach him how to install mods in Minecraft so his kids could enjoy qCraft and teach him about quantum entanglement when I wasn’t around. To my delight, I found myself listening to Mr. Rudd talk about his son’s sense of humor and his daughter’s intelligence with such pride, that I forgot for a moment the reason I was there; instead, it felt like I was catching up with an old friend and all we could talk about was our kids (I don’t have any, so I mostly listened).

**The Meeting
**

Within five minutes, the director (Peyton Reed), the writers, producers, VFX specialists, computer playback experts (I became friends with their supervisor, Mr. Matthew Morrissey, who went to great lengths to represent the atoms on-screen as clouds of probability, in the *s, p, d, f* orbital configurations you see flashing in quantum superposition behind Hank Pym at his lab) and everyone else with an interest in quantum mechanics was in the room. I sat at the head of the long table with Paul next to me. He asked most of the questions along with the director, but at the time I didn’t know Paul was involved with writing the script. We discussed a lot of things, but what got everyone excited was the idea that the laws of physics as we know them may break down as we delve deeper and deeper into the* quantum realm*. You see, all of the other superheroes, no matter how strong and super, had powers that conformed to the laws of physics (stretching them from time to time, but never breaking them). But if someone could go to a place where the laws of physics as we know them were not yet formed, at a place where the arrow of time was broken and the fabric of space was not yet woven, the powers of such a master of the quantum realm would only be constrained by their ability to come back to the same (or similar) reality from which they departed. All the superheroes of Marvel and DC Comics combined would stand no chance against Ant-Man with a malfunctioning regulator…

**The Quantum Realm**

The birth of the term itself is an interesting story. Brad Winderbaum, co-producer for the movie, emailed me a couple of weeks after the meeting with the following request: *Could I come up with a term describing Ant-Man going to the “microverse”?* The term “microverse” carried legal baggage, so something fresh was needed. I offered “going nano”, “going quantum”, “going atomic”, or… “quantum realm”. I didn’t know how small the “microverse” scale was supposed to be in a writer’s mind (in a physicist’s mind it is exactly meters – one thousandth of a millimeter), hence the many options. The reply was quick:

Thanks Spiros! Quantum Realm is a pretty great term.

Et voilà. Ant-Man was going to the quantum realm, a place where time and space dissolve and the only thing strong enough to anchor Scott Lang to reality is… You have to watch the movie to see what that is – it was an off-the-cuff remark I made at the meeting… At the end of the meeting, Paul, Peyton and the others thanked me and asked me if I could fly to San Francisco the next week for the first week of shooting. There, I would have met Michael Douglas and Evangeline Lilly, but I declined the generous offer. It was the week of Innoworks Academy at Caltech, an award-winning summer camp for middle school kids on the free/reduced lunch program. As the camp’s adviser, I resolved to never miss a camp as long as I was in the country and San Francisco is in the same state as Caltech. My mom would be proud of my decision (I hope), though an autograph from Mr. Douglas would have fetched me a really good hug.

**The Movie
**

I just watched the movie yesterday (it is actually good!) and the feeling was surreal. Because I had no idea what to expect. Because I never thought that the people in that room would take what I was saying seriously enough to use it in the movie. I never got a copy of the script and during the official premiere three weeks ago, I was delivering a lecture on the future of quantum computing in a monastery in Madrid, Spain. When I found out that Kevin Feige, president of Marvel Studios, said this at a recent interview, my heart skipped several beats:

But the truth is, there is so much in

Ant-Man: introducing a new hero, introducing a very important part of technology in the Marvel universe, the Pym particles. Ant-Man getting on the Avengers’ radar in this film and even – this is the weirdest part, you shouldn’t really talk about it because it won’t be apparent for years – but the whole notion of the quantum realm and the whole notion of going to places that are so out there, they are almost mind-bendingly hard to fathom. It all plays into Phase Three.

The third phase of the Marvel Cinematic Universe is about to go quantum and all I can think of is: *I better start reading comic books again.* But first, I have to teach a bunch of 11-14 year-old girls quantum physics through Minecraft. It is, after all, the final week of Project Scientist here at Caltech this summer and the theme is coding. With quantum computers at the near horizon, these young women need to learn how to program Asimov’s laws of quantum robotics into our benevolent quantum A.I. overlords. These young women are humanity’s new hope…

]]>

I had heard correctly. I nodded.

“Did you play with BB guns when you were a kid?”

I nodded again.

“I had BB guns,” the lecturer ruminated. “I had to defend myself from my brothers.”

I nodded more vigorously. My brother and I love each other, but we’ve crossed toy pistols.

“*Photons* are like BBs, like bullets.”

Light, the lecturer continued, behaves like BBs under certain conditions. Under other conditions, light behaves differently. Different behaviors correspond to different species of light. Some species, we can approximate with classical (nonquantum*) physics. Some species, we can’t.

Kids begged less for BB guns, in my experience, than for water guns. I grew up in Florida, where swimming season stretches from April till September. To reload a BB gun, you have to fetch spent BBs. But, toting a Supersoaker, you swim in ammunition.

Water guns brought to mind water waves, which resemble a species of classical light. If BBs resemble photons, I mused, what about Supersoaker sprays? Water balloons?

I resolved to draw as many parallels as I could between species of light and childhood weapons.

Under scrutiny, the Supersoaker analogy held little water (sorry). A Supersoaker releases water in a stream, rather than in a coherent wave. By *coherent*, I mean that the wave has a well-defined wavelength: The distance from the first crest to the second equals the distance from the second to the third, and so on. I can’t even identify crests in the Supersoaker photo below.

Maybe Supersoaker sprays resemble incoherent light? *Incoherent light* is a mixture of waves of all different wavelengths. Classical physics approximates incoherent light, examples of which include sunlight. If you tease apart sunlight into coherent components, you’ll find waves with short wavelengths (such as ultraviolet rays), waves with medium (such as light we can see), and waves with long (such as microwaves). You can’t ascribe just one wavelength to incoherent light, just as I seemed unable to ascribe a wavelength to Supersoaker sprays.

But Supersoaker sprays differ from incoherent light in other respects. I’d expect triggers, for instance, to introduce nonlinearity into the spray’s dynamics. Readers who know more than I about fluid mechanics can correct me.

Though far-reaching and forceful, Supersoakers weigh down combatants and are difficult to hide. If you need ammunition small enough for a sneak attack, I recommend water balloons. Water balloons resemble *squeezed states*, which form a quantum class of light related to the Uncertainty Principle.

Werner Heisenberg proposed that, the more you know about a quantum particle’s position, the less you can know about its momentum, and vice versa. Let’s represent your uncertainty about the position by Δ_{x} and your uncertainty about the momentum by Δ_{p}. The product of these uncertainties can’t dip below some number, represented by *ћ*/2:

.

Neither uncertainty, for example, can equal zero. Heisenberg’s proposal has evolved into more rigorous, more general forms. But the story remains familiar: The lesser the “spread in the possible values” of some property (like position), the greater the “spread in the possible values” of another property (like momentum).

Imagine plotting the possible positions along a graph’s horizontal axis and the possible momenta along the vertical. The points that could characterize our quantum system form a blob of area *ћ*/2. Doesn’t the blob resemble a water balloon?

Imagine squeezing a water balloon along one direction. The balloon bulges out along another. Now, imagine squeezing most of the quantum uncertainty along one direction in the diagram. You’ve depicted a squeezed state.

Not all childhood weapons contain water or BBs, and not all states of light contain photons.^{**} A *vacuum* is a state that consists of zero photons. Classical physics suggests that the vacuum is empty and lacks energy. A sliver of energy, called *zero-point energy,* pervades each quantum vacuum. The Uncertainty Principle offers one reason why.

The vacuum reminds me of the silent treatment. Silence sounds empty, but it can harbor malevolence as quantum vacua harbor energy. Middle-school outcasts beware zero-point malice.

Retreating up Memory Lane, I ran out of analogies between classes of light and childhood weapons. Children play with lasers (with laser pointers and laser-tag guns), and lasers emit (approximately) coherent light. But laser light’s resemblance to laser light doesn’t count as an analogy. The class of incoherent light includes *thermal states*. (Non-experts, I’m about to spew jargon. If you have the energy, I recommend Googling the italicized terms. If you haven’t, feel free to skip to the next paragraph.) Physicists model much of the natural world with thermal states. To whichever readers identify childhood weapons that resemble them, I offer ten points. I offer 20 for mimicry of *solitons *or* solitary waves*, and 25 for that of *parametric down-conversion* or* photon antibunching*.

But if sunshine and Supersoakers lure you away from your laptop, I can’t object. Happy summer.

*With thanks to Bassam Helou for corrections and discussions.*

^{*}Pardon my simplifying inaccuracy. Some nonquantum physics is nonclassical.

^{**}More precisely, not all Fock states correspond to particle numbers . Alternatively: Not all states of light correspond to positive expectation values of the particle-number operator .

]]>

The question of how to formulate a quantum theory of gravity is a long-standing open problem in theoretical physics. Somewhat recently, an idea that has gained a lot of traction (and that Spiros has blogged about before) is emergence. This is the idea that space and time may emerge from some more fine-grained quantum objects and their interactions. If we could understand how classical spacetime emerges from an underlying quantum system, then it’s not too much of a stretch to hope that this understanding would give us insight into the full quantum nature of spacetime.

One type of emergence is exhibited in holography, which is the idea that certain (*D*+1)-dimensional systems with gravity are exactly equivalent to *D*-dimensional quantum theories without gravity. (Note that we’re calling time a dimension here. For example, you would say that on a day-to-day basis we experience *D *= 4 dimensions.) In this case, that extra +1 dimension and the concomitant gravitational dynamics are emergent phenomena.

A nice aspect of holography is that it is explicitly realized by the AdS/CFT correspondence. This correspondence proposes that a particular class of spacetimes—ones that asymptotically look like anti-de Sitter space, or AdS—are equivalent to states of a particular type of quantum system—a conformal field theory, or CFT. A convenient visualization is to draw the AdS spacetime as a cylinder, where time marches forward as you move up the cylinder and different slices of the cylinder correspond to snapshots of space at different instants of time. Conveniently, in this picture you can think of the corresponding CFT as living on the boundary of the cylinder, which, you should note, has one less dimension than the “bulk” inside the cylinder.

Even within this nice picture of holography that we get from the AdS/CFT correspondence, there is a question of how exactly do CFT, or boundary quantities map onto quantities in the AdS bulk. This is where a certain tool from quantum information theory called tensor networks has recently shown a lot of promise.

A tensor network is a way to efficiently represent certain states of a quantum system. Moreover, they have nice graphical representations which look something like this:

Beni discussed one type of tensor network in his post on holographic codes. In this post, let’s discuss the tensor network shown above, which is known as the Multiscale Entanglement Renormalization Ansatz, or MERA.

The MERA was initially developed by Guifre Vidal and Glen Evenbly as an efficient approximation to the ground state of a CFT. Roughly speaking, in the picture of a MERA above, one starts with a simple state at the centre, and as you move outward through the network, the MERA tells you how to build up a CFT state which lives on the legs at the boundary. The MERA caught the eye of Brian Swingle, who noticed that it looks an awfully lot like a discretization of a slice of the AdS cylinder shown above. As such, it wasn’t a preposterously big leap to suggest a possible “AdS/MERA correspondence.” Namely, perhaps it’s more than a simple coincidence that a MERA both encodes a CFT state and resembles a slice of AdS. Perhaps the MERA gives us the tools that are required to construct a map between the boundary and the bulk!

So, how seriously should one take the possibility of an AdS/MERA correspondence? That’s the question that my colleagues and I addressed in a recent paper. Essentially, there are several properties that a consistent holographic theory should satisfy in both the bulk and the boundary. We asked whether these properties are still simultaneously satisfied in a correspondence where the bulk and boundary are related by a MERA.

What we found was that you invariably run into inconsistencies between bulk and boundary physics, at least in the simplest construals of what an AdS/MERA correspondence might be. This doesn’t mean that there is no hope for an AdS/MERA correspondence. Rather, it says that the simplest approach will not work. For a good correspondence, you would need to augment the MERA with some additional structure, or perhaps consider different tensor networks altogether. For instance, the holographic code features a tensor network which hints at a possible bulk/boundary correspondence, and the consistency conditions that we proposed are a good list of checks for Beni and company as they work out the extent to which the code can describe holographic CFTs. Indeed, a good way to summarize how our work fits into the picture of quantum gravity alongside holography and tensors networks is by saying that it’s nice to have good signposts on the road when you don’t have a map.

]]>

I’ve asked in seminars, in lectures, in offices, and at group meetings. I’ve asked about physical conjectures, about theorems, and about mathematical properties.

“I don’t know.” Lecturers have shrugged. “It’s just a name.”

This spring, I asked about master equations. I thought of them as tools used in statistical mechanics, the study of vast numbers of particles. We can’t measure vast numbers of particles, so we can’t learn about stat-mech systems everything one might want to know. The magma beneath Santorini, for example, consists of about 10^{24} molecules. Good luck measuring every one.

Imagine, as another example, using a quantum computer to solve a problem. We load information by initializing the computer to a certain *state*: We orient the computer’s particles in certain directions. We run a program, then read out the output.

Suppose the computer sits on a tabletop, exposed to the air like leftover casserole no one wants to save for tomorrow. Air molecules bounce off the computer, becoming entangled with the hardware. This entanglement, or quantum correlation, alters the computer’s state, just as flies alter a casserole.^{*} To understand the computer’s output—which depends on the state, which depends on the air—we must have a description of the air. But we can’t measure all those air molecules, just as we can’t measure all the molecules in Santorini’s magma.

We can package our knowledge about the computer’s state into a mathematical object, called a *density operator*, labeled by ρ(t). A *quantum master equation *describes how ρ(t) changes. I had no idea, till this spring, why we call master equations “master equations.” Had someone named “John Master” invented them? Had the inspiration for the Russell Crowe movie *Master and Commander*? Or the Igor who lisps, “Yeth, mathter” in adaptations of *Frankenstein*?

Jenia Mozgunov, a fellow student and Preskillite, proposed an answer: Using master equations, we can calculate how averages of observable properties change. Imagine describing a laser, a cavity that spews out light. A master equation reveals how the average number of photons (particles of light) in the cavity changes. We want to predict these averages because experimentalists measure them. Because master equations spawn many predictions—many equations—they merit the label “master.”

Jenia’s hypothesis appealed to me, but I wanted certainty. I wanted Truth. I opened my laptop and navigated to Facebook.

“Does anyone know,” I wrote in my status, “why master equations are called ‘master equations’?”

Ian Durham, a physicist at St. Anselm College, cited Tom Moore’s *Six Ideas that Shaped Physics. *Most physics problems, Ian wrote, involve “some overarching principle.” Example principles include energy conservation and invariance under discrete translations (the system looks the same after you step in some direction). A master equation encapsulates this principle.

Ian’s explanation sounded sensible. But fewer people “liked” his reply on Facebook than “liked” a quip by a college friend: Master equations deserve their name because “[t]hey didn’t complete all the requirements for the doctorate.”

My advisor, John Preskill, dug through two to three books, one set of lecture notes, one German Wikipedia page, one to two articles, and Google Scholar. He concluded that Nordsieck, Lamb, and Uhlenbeck coined “master equation.” According to a 1940 paper of theirs,^{**} “When the probabilities of the elementary processes are known, one can write down a continuity equation for *W* [a set of probabilities], from which all other equations can be derived and which we will call therefore the ‘master’ equation.”

“Are you sure you were meant to be a physicist,” I asked John, “rather than a historian?”

“Procrastination is a powerful motivator,” he replied.

Lecturers have shrugged at questions about names. Then they’ve paused, pondered, and begun, “I guess because…” Theorems and identities derive their names from symmetries, proof techniques, geometric illustrations, and applications to problems I’d thought unrelated. A name taught me about uses for master equations. Names reveal physics I wouldn’t learn without asking about names. Names aren’t just names. They’re lamps and guides.

Pity about the origin of “master equation,” though. I wish an Igor had invented them.

^{*}Apologies if I’ve spoiled your appetite.

^{**}A. Nordsieck, W. E. Lamb, and G. E. Uhlenbeck, “On the theory of cosmic-ray showers I,” *Physica* **7**, 344-60 (1940), p. 353.

]]>

fig has total # uses of qubit in arxiv (divided by 10) per month, and total # docs per month: an impressive 669394 total in 29587 docs. the graph starts at 9412 (dec '94), but that is illusory since qubit only shows up in v2 of hep-th/9412048, posted in 2004. the actual first was quant-ph/9503016 by bennett/divicenzo/shor et al (posted 23 Mar '95) where they carefully attribute the term to schumacher ("PRA, to appear '95") and jozsa/schumacher ("J. Mod Optics '94"), followed immediately by quant-ph/9503017 by deutsch/jozsa et al (which no longer finds it necessary to attribute term) [neither of schumacher's first two articles is on arxiv, but otherwise probably have on arxiv near 100% coverage of its usage and growth, so permits a viral epidemic analysis along the lines of kaiser's "drawing theories apart" of use of Feynman diagrams in post wwII period]. ever late to the party, the first use by j.preskill was quant-ph/9602016, posted 21 Feb 1996 #articles by primary subject area as follows (hep-th is surprisingly low given the firewall connection...): quant-ph 22096 cond-mat.mes-hall 3350 cond-mat.supr-con 880 cond-mat.str-el 376 cond-mat.mtrl-sci 250 math-ph 244 hep-th 228 physics.atom-ph 224 cond-mat.stat-mech 213 cond-mat.other 200 physics.optics 177 cond-mat.quant-gas 152 physics.gen-ph 120 gr-qc 105 cond-mat 91 cs.CC 85 cs.IT 67 cond-mat.dis-nn 55 cs.LO 49 cs.CR 43 physics.chem-ph 33 cs.ET 25 physics.ins-det 21 math.CO,nlin.CD 20 physics.hist-ph,physics.bio-ph,math.OC 19 hep-ph 18 cond-mat.soft,cs.DS,math.OA 17 cs.NE,cs.PL,math.QA 13 cs.AR,cs.OH 12 physics.comp-ph 11 math.LO 10 physics.soc-ph,physics.ed-ph,cs.AI 9 math.ST,physics.pop-ph,cs.GT 8 nlin.AO,astro-ph,cs.DC,cs.FL,q-bio.GN 7 nlin.PS,math.FA,cs.NI,math.PR,q-bio.NC,physics.class-ph,math.GM, physics.data-an 6 nlin.SI,math.CT,q-fin.GN,cs.LG,q-bio.BM,cs.DM,math.GT 5 math.DS,physics.atm-clus,q-bio.PE 4 math.DG,math.CA,nucl-th,q-bio.MN,math.HO,stat.ME,cs.MS,q-bio.QM, math.RA,math.AG,astro-ph.IM,q-bio.OT 3 stat.AP,cs.CV,math.SG,cs.SI,cs.SE,cs.SC,cs.DB,stat.ML,physics.med-ph, math.RT 2 cs.CL,cs.CE,q-fin.RM,chao-dyn,astro-ph.CO,q-fin.ST,math.NA, cs.SY,math.MG,physics.plasm-ph,hep-lat,math.GR,cs.MM,cs.PF,math.AC, nucl-ex 1

]]>

But the event that moved me to write a blog post is the 1995 appearance of the word “qubit” in an American Physical Society journal. When I was a boy, two-level quantum systems were called “two-level quantum systems.” Which is a descriptive name, but a mouthful and far from euphonious. Think of all the time I’ve saved in the past 20 years by saying “qubit” instead of “two-level quantum system.” And saying “qubit” not only saves time, it also conveys the powerful insight that a quantum state encodes a novel type of information. (Alas, the spelling was bound to stir controversy, with the estimable David Mermin a passionate holdout for “qbit”. Give it up, David, you lost.)

For the word “qubit” we know whom to thank: Ben Schumacher. He introduced the word in his paper “Quantum Coding” which appeared in the April 1995 issue of Physical Review A. (History is complicated, and in this case the paper was actually submitted in 1993, which allowed another paper by Jozsa and Schumacher to be published earlier even though it was written and submitted later. But I’m celebrating the 20th anniversary of the qubit now, because otherwise how will I justify this blog post?)

In the acknowledgments of the paper, Ben provided some helpful background on the origin of the word:

The term “qubit” was coined in jest during one of the author’s many intriguing and valuable conversations with W. K. Wootters, and became the initial impetus for this work.

I met Ben (and other luminaries of quantum information theory) for the first time at a summer school in Torino, Italy in 1996. After reading his papers my expectations were high, all the more so after Sam Braunstein warned me that I would be impressed: “Ben’s a good talker,” Sam assured me. I was not disappointed.

(I also met Asher Peres at that Torino meeting. When I introduced myself Asher asked, “Isn’t there someone with a similar name in particle theory?” I had no choice but to come clean. I particularly remember that conversation because Asher told me his secret motivation for studying quantum entanglement: it might be important in quantum gravity!)

A few years later Ben spent his sabbatical year at Caltech, which gave me an opportunity to compose a poem for the introduction to Ben’s (characteristically brilliant) talk at our physics colloquium. This poem does homage to that famous 1995 paper in which Ben not only introduced the word “qubit” but also explained how to compress a quantum state to the minimal number of qubits from which the original state can be recovered with a negligible loss of fidelity, thus formulating and proving the quantum version of Shannon’s famous source coding theorem, and laying the foundation for many subsequent developments in quantum information theory.

Sometimes when I recite a poem I can sense the audience’s appreciation. But in this case there were only a few nervous titters. I was going for edgy but might have crossed the line into bizarre.. Since then I’ve (usually) tried to be more careful.

(For reading the poem, it helps to know that the quantum state appears to be random when it has been compressed as much as possible.)

**On Quantum Compression (in honor of Ben Schumacher)**

Ben.

He rocks.

I remember

When

He showed me how to fit

A qubit

In a small box.I wonder how it feels

To be compressed.

And then to pass

A fidelity test.Or does it feel

At all, and if it does

Would I squeal

Or be just as I was?If not undone

I’d become as I’d begun

And write a memorandum

On being random.

Had it felt like a belt

Of rum?And might it be predicted

That I’d become addicted,

Longing for my session

Of compression?I’d crawl

To Ben again.

And call,

“Put down your pen!

Don’t stall!

Make me small!”

]]>

I was standing in a hallway at the University of Maryland. On one side stood quantum-information theorists. On the other side stood statistical-mechanics scientists.^{*} The groups eyed each other, like Jets and Sharks in *West Side Story*, except without fighting or dancing.

This March, the groups were generous enough to host me for a visit. I parked first at QuICS, the Joint Center for Quantum Information and Computer Science. Established in October 2014, QuICS had moved into renovated offices the previous month. QuICSland boasts bright colors, sprawling armchairs, and the scent of novelty. So recently had QuICS arrived that the restroom had not acquired toilet paper (as I learned later than I’d have preferred).

From QuICS, I yoyo-ed to the chemistry building, where Chris Jarzynski’s group studies fluctuation relations. *Fluctuation relations*, introduced elsewhere on this blog, describe out-of-equilibrium systems. A system is *out of equilibrium* if large-scale properties of it change. Many systems operate out of equilibrium—boiling soup, combustion engines, hurricanes, and living creatures, for instance. Physicists want to describe nonequilibrium processes but have trouble: Living creatures are complicated. Hence the buzz about fluctuation relations.

My first Friday in Maryland, I presented a seminar about quantum voting for QuICS. The next Tuesday, I was to present about one-shot information theory for stat-mech enthusiasts. Each week, the stat-mech crowd invites its speaker to lunch. Chris Jarzynski recommended I invite QuICS. Hence the Jets-and-Sharks tableau.

“Have you interacted before?” I asked the hallway.

“No,” said a voice. QuICS hadn’t existed till last fall, and some QuICSers hadn’t had offices till the previous month.**

Silence.

“We’re QuICS,” volunteered Stephen Jordan, a quantum-computation theorist, “the Joint Center for Quantum Information and Computer Science.”

So began the mingling. It continued at lunch, which we shared at three circular tables we’d dragged into a chain. The mingling continued during the seminar, as QuICSers sat with chemists, materials scientists, and control theorists. The mingling continued the next day, when QuICSer Alexey Gorshkov joined my discussion with the Jarzynski group. Back and forth we yoyo-ed, between buildings and topics.

“Mingled,” said Yigit Subasi. Yigit, a postdoc of Chris’s, specialized in quantum physics as a PhD student. I’d asked how he thinks about quantum fluctuation relations. Since Chris and colleagues ignited fluctuation-relation research, theorems have proliferated like vines in a jungle. Everyone and his aunty seems to have invented a fluctuation theorem. I canvassed Marylanders for bushwhacking tips.

Imagine, said Yigit, a system whose state you know. Imagine a gas, whose temperature you’ve measured, at equilibrium in a box. Or imagine a trapped ion. Begin with a state about which you have information.

Imagine performing work on the system “violently.” Compress the gas quickly, so the particles roil. Shine light on the ion. The system will leave equilibrium. “The information,” said Yigit, “gets mingled.”

Imagine halting the compression. Imagine switching off the light. Combine your information about the initial state with assumptions and physical laws.^{***} Manipulate equations in the right way, and the information might “unmingle.” You might capture properties of the violence in a fluctuation relation.

I’m grateful to have exchanged information in Maryland, to have yoyo-ed between groups. We have work to perform together. I have transformations to undergo.^{****} Let the unmingling begin.

*With gratitude to Alexey Gorshkov and QuICS, and to Chris Jarzynski and the University of Maryland Department of Chemistry, for their hospitality, conversation, and camaraderie.*

^{*}*Statistical mechanics* is the study of systems that contain vast numbers of particles, like the air we breathe and white dwarf stars. I harp on about statistical mechanics often.

**Before QuICS’s birth, a future QuICSer had collaborated with a postdoc of Chris’s on combining quantum information with fluctuation relations.

^{***}Yes, physical laws are assumptions. But they’re glorified assumptions.

^{****}Hopefully nonviolent transformations.

]]>

I tacked Dirac’s quote onto the bulletin board above my desk, the summer before senior year of high school. I’d picked quotes by T.S. Elliot and Einstein, Catullus and Hatshepsut.^{*} In a closet, I’d found amber-, peach-, and scarlet-colored paper. I’d printed the quotes and arranged them, starting senior year with inspiration that looked like a sunrise.

Not that I knew who Paul Dirac was. Nor did I evaluate his opinion. But I’d enrolled in Advanced Placement Physics C and taken the helm of my school’s literary magazine. The confluence of two passions of mine—science and literature—in Dirac’s quote tickled me.

A fiery lecturer began to alleviate my ignorance in college. Dirac, I learned, had co-invented quantum theory. The “*Dee-*rac Equa-shun,” my lecturer trilled in her Italian accent, describes relativistic quantum systems—tiny particles associated with high speeds. I developed a taste for *spin*, a quantum phenomenon encoded in Dirac’s equation. Spin serves quantum-information scientists as two-by-fours serve carpenters: Experimentalists have tried to build quantum computers from particles that have spins. Theorists keep the idea of electron spins in a mental car trunk, to tote out when illustrating abstract ideas with examples.

The next year, I learned that Dirac had predicted the existence of antimatter. Three years later, I learned to represent antimatter mathematically. I memorized the Dirac Equation, forgot it, and re-learned it.

One summer in grad school, visiting my parents, I glanced at my bulletin board.

The sun rises beyond a window across the room from the board. Had the light faded the papers’ colors? If so, I couldn’t tell.

*In science one tries to tell people, in such a way as to be understood by everyone, something that no one ever knew before. But in the case of poetry, it’s the exact opposite!*

Do poets try to obscure ideas everyone understands? Some poets express ideas that people intuit but feel unable, lack the attention, or don’t realize one should, articulate. Reading and hearing poetry helps me grasp the ideas. Some poets express ideas in forms that others haven’t imagined.

Did Dirac not represent physics in a form that others hadn’t imagined?

Would you have imagined that form? I didn’t imagine it until learning it. Do scientists not express ideas—about gravity, time, energy, and matter—that people feel unable, lack the attention, or don’t realize we should, articulate?

The U.S. and Canada have designated April as National Poetry Month. A hub for cousins of poets,* Quantum Frontiers* salutes. Carry a poem in your pocket this month. Or carry a copy of the Dirac Equation. Or tack either on a bulletin board; I doubt whether their colors will fade.

^{*}“Now my heart turns this way and that, as I think what the people will say. Those who see my monuments in years to come, and who shall speak of what I have done.” I expect to build no such monuments. But here’s to trying.

]]>

In a recent paper with Daniel Harlow, Fernando Pastawski and John Preskill, we have proposed a toy model of the AdS/CFT correspondence based on quantum error-correcting codes. Fernando has already written how this research project started after a fateful visit by Daniel to Caltech and John’s remarkable prediction in 1999. In this post, I hope to write an introduction which may serve as a reader’s guide to our paper, explaining why I’m so fascinated by the beauty of the toy model.

This is certainly a challenging task because I need to make it accessible to everyone while explaining real physics behind the paper. My personal philosophy is that a toy model must be as simple as possible while capturing key properties of the system of interest. In this post, I will try to extract some key features of the AdS/CFT correspondence and construct a toy model which captures these features. This post may be a bit technical compared to other recent posts, but anyway, let me give it a try…

**Bulk locality paradox and quantum error-correction**

The AdS/CFT correspondence says that there is some kind of correspondence between quantum gravity on (d+1)-dimensional asymptotically-AdS space and d-dimensional conformal field theory on its boundary. But how are they related?

The AdS-Rindler reconstruction tells us how to “reconstruct” a bulk operator from boundary operators. Consider a bulk operator and a boundary region A on a hyperbolic space (in other words, a negatively-curved plane). On a fixed time-slice, the causal wedge of A is a bulk region enclosed by the geodesic line of A (a curve with a minimal length). The AdS-Rindler reconstruction says that can be represented by some integral of local boundary operators supported on A if and only if is contained inside the causal wedge of A. Of course, there are multiple regions A,B,C,… whose causal wedges contain , and the reconstruction should work for any such region.

That a bulk operator in the causal wedge can be reconstructed by local boundary operators, however, leads to a rather perplexing paradox in the AdS/CFT correspondence. Consider a bulk operator at the center of a hyperbolic space, and split the boundary into three pieces, A, B, C. Then the geodesic line for the union of BC encloses the bulk operator, that is, is contained inside the causal wedge of BC. So, can be represented by local boundary operators supported on BC. But the same argument applies to AB and CA, implying that the bulk operator corresponds to local boundary operators which are supported inside AB, BC and CA simultaneously. It would seem then that the bulk operator must correspond to an identity operator times a complex phase. In fact, similar arguments apply to any bulk operators, and thus, all the bulk operators must correspond to identity operators on the boundary. Then, the AdS/CFT correspondence seems so boring…

Almheiri, Dong and Harlow have recently proposed an intriguing way of reconciling this paradox with the AdS/CFT correspondence. They proposed that *the AdS/CFT correspondence can be viewed as a quantum error-correcting code*. Their idea is as follows. Instead of corresponding to a single boundary operator, may correspond to different operators in different regions, say , , living in AB, BC, CA respectively. Even though , , are different boundary operators, they may be equivalent inside a certain low energy subspace on the boundary.

This situation resembles the so-called quantum secret-sharing code. The quantum information at the center of the bulk cannot be accessed from any single party A, B or C because does not have representation on A, B, or C. It can be accessed only if multiple parties cooperate and perform joint measurements. It seems that a quantum secret is shared among three parties, and the AdS/CFT correspondence somehow realizes the three-party quantum secret-sharing code!

**Entanglement wedge reconstruction?**

Recently, causal wedge reconstruction has been further generalized to the notion of entanglement wedge reconstruction. Imagine we split the boundary into four pieces A,B,C,D such that A,C are larger than B,D. Then the geodesic lines for A and C do not form the geodesic line for the *union* of A and C because we can draw shorter arcs by connecting endpoints of A and C, which form the global geodesic line. The entanglement wedge of AC is a bulk region enclosed by this global geodesic line of AC. And the entanglement wedge reconstruction predicts that can be represented as an integral of local boundary operators on AC if and only if is inside the entanglement wedge of AC [1].

**Building a minimal toy model; the five-qubit code**

Okay, now let’s try to construct a toy model which admits causal and entanglement wedge reconstructions of bulk operators. Because I want a simple toy model, I take a rather bold assumption that *the bulk consists of a single qubit while the boundary consists of five qubits, denoted by A, B, C, D, E*.

What does causal wedge reconstruction teach us in this minimal setup of five and one qubits? First, we split the boundary system into two pieces, ABC and DE and observe that the bulk operator is contained inside the causal wedge of ABC. From the rotational symmetries, we know that the bulk operator must have representations on ABC, BCD, CDE, DEA, EAB. Next, we split the boundary system into four pieces, AB, C, D and E, and observe that the bulk operator is contained inside the entanglement wedge of AB and D. So, the bulk operator must have representations on ABD, BCE, CDA, DEB, EAC. In summary, we have the following:

- The bulk operator must have representations on R if and only if R contains three or more qubits.

This is the property I want my toy model to possess.

What kinds of physical systems have such a property? Luckily, we quantum information theorists know the answer; the five-qubit code. The five-qubit code, proposed here and here, has an ability to encode one logical qubit into five-qubit entangled states and corrects any single qubit error. We can view the five-qubit code as a quantum encoding isometry from one-qubit states to five-qubit states:

where and are the basis for a logical qubit. In quantum coding theory, logical Pauli operators and are Pauli operators which act like Pauli X (bit flip) and Z (phase flip) on a logical qubit spanned by and . In the five-qubit code, for any set of qubits R with volume 3, some representations of logical Pauli X and Z operators, and , can be found on R. While and are different operators for , they act exactly in the same manner on the codeword subspace spanned by and . This is exactly the property I was looking for.

**Holographic quantum error-correcting codes**

We just found possibly the smallest toy model of the AdS/CFT correspondence, the five-qubit code! The remaining task is to construct a larger model. For this goal, we view the encoding isometry of the five-qubit code as a six-leg tensor. The holographic quantum code is a network of such six-leg tensors covering a hyperbolic space where each tensor has one open leg. These open legs on the bulk are interpreted as logical input legs of a quantum error-correcting code while open legs on the boundary are identified as outputs where quantum information is encoded. Then the entire tensor network can be viewed as an encoding isometry.

The six-leg tensor has some nice properties. Imagine we inject some Pauli operator into one of six legs in the tensor. Then, for any given choice of three legs, there always exists a Pauli operator acting on them which counteracts the effect of the injection. An example is shown below:

In other words, if an operator is injected from one tensor leg, one can “push” it into other three tensor legs.

Finally, let’s demonstrate causal wedge reconstruction of bulk logical operators. Pick an arbitrary open tensor leg in the bulk and inject some Pauli operator into it. We can “push” it into three tensor legs, which are then injected into neighboring tensors. By repeatedly pushing operators to the boundary in the network, we eventually have some representation of the operator living on a piece of boundary region A. And the bulk operator is contained inside the causal wedge of A. (Here, the length of the curve can be defined as the number of tensor legs cut by the curve). You can also push operators into the boundary by choosing different tensor legs which lead to different representations of a logical operator. You can even have a rather exotic representation which is supported non-locally over two disjoint pieces of the boundary, realizing entanglement wedge reconstruction.

**What’s next?**

This post is already pretty long and I need to wrap it up…

Shor’s quantum factoring algorithm is a revolutionary invention which opened a whole new research avenue of quantum information science. It is often forgotten, but the first quantum error-correcting code is another important invention by Peter Shor (and independently by Andrew Steane) which enabled a proof that the quantum computation can be performed fault-tolerantly. The theory of quantum error-correcting codes has found interesting applications in studies of condensed matter physics, such as topological phases of matter. Perhaps then, quantum coding theory will also find applications in high energy physics.

Indeed, many interesting open problems are awaiting us. Is entanglement wedge reconstruction a generic feature of tensor networks? How do we describe black holes by quantum error-correcting codes? Can we build a fast scrambler by tensor networks? Is entanglement a wormhole (or maybe a perfect tensor)? Can we resolve the firewall paradox by holographic quantum codes? Can the physics of quantum gravity be described by tensor networks? Or can the theory of quantum gravity provide us with novel constructions of quantum codes?

I feel that now is the time for quantum information scientists to jump into the research of black holes. We don’t know if we will be burned by a firewall or not … , but it is worth trying.

1. Whether entanglement wedge reconstruction is possible in the AdS/CFT correspondence or not still remains controversial. In the spirit of the Ryu-Takayanagi formula which relates entanglement entropy to the length of a global geodesic line, entanglement wedge reconstruction seems natural. But that a bulk operator can be reconstructed from boundary operators on two separate pieces A and C non-locally sounds rather exotic. In our paper, we constructed a toy model of tensor networks which allows both causal and entanglement wedge reconstruction in many cases. For details, see our paper.

]]>