What will you visit? The Ashmolean Museum, home to da Vinci drawings, samurai armor, and Egyptian mummies? The Bodleian, one of Europe’s oldest libraries? Turf Tavern, where former president Bill Clinton reportedly “didn’t inhale” marijuana?

Felix Binder showed us a cemetery.

Of course he showed us a cemetery. We were at a thermodynamics conference.

The Fifth Quantum Thermodynamics Conference took place in the City of Dreaming Spires.^{1 }Participants enthused about energy, information, engines, and the flow of time. About 160 scientists attended—roughly 60 more than attended the first conference, co-organizer Janet Anders estimated.

Weak measurements and quasiprobability distributions were trending. The news delighted me, *Quantum Frontiers* regulars won’t be surprised to hear.

Measurements disturb quantum systems, as early-20th-century physicist Werner Heisenberg intuited. Measure a system’s position strongly, and you forfeit your ability to predict the outcomes of future momentum measurements. Weak measurements don’t disturb the system much. In exchange, weak measurements provide little information about the system. But you can recoup information by performing a weak measurement in each of many trials, then processing the outcomes.

Strong measurements lead to probability distributions: Imagine preparing a particle in some quantum state, then measuring its position strongly, in each of many trials. From the outcomes, you can infer a probability distribution , wherein denotes the probability that the next trial will yield position .

Weak measurements lead analogously to quasiprobability distributions. Quasiprobabilities resemble probabilities but can misbehave: Probabilities are real numbers no less than zero. Quasiprobabilities can dip below zero and can assume nonreal values.

What relevance have weak measurements and quasiprobabilities to quantum thermodynamics? Thermodynamics involves work and heat. Work is energy harnessed to perform useful tasks, like propelling a train from London to Oxford. Heat is energy that jiggles systems randomly.

Quantum properties obscure the line between work and heat. (Here’s an illustration for experts: Consider an isolated quantum, such as a spin chain. Let denote the Hamiltonian that evolves with the time . Consider preparing the system in an energy eigenstate . This state has zero diagonal entropy: Measuring the energy yields deterministically. Considering tuning , as by changing a magnetic field. This change constitutes work, we learn in electrodynamics class. But if changes quickly, the state can acquire weight on multiple energy eigenstates. The diagonal entropy rises. The system’s energetics have gained an unreliability characteristic of heat absorption. But the system has remained isolated from any heat bath. Work mimics heat.)

Quantum thermodynamicists have defined work in terms of a *two-point measurement scheme*: Initialize the quantum system, such as by letting heat flow between the system and a giant, fixed-temperature heat reservoir until the system equilibrates. Measure the system’s energy strongly, and call the outcome . Isolate the system from the reservoir. Tune the Hamiltonian, performing the quantum equivalent of propelling the London train up a hill. Measure the energy, and call the outcome .

Any change in a system’s energy comes from heat and/or from work , by the First Law of Thermodynamics, Our system hasn’t exchanged energy with any heat reservoir between the measurements. So the energy change consists of work: .

Imagine performing this protocol in each of many trials. Different trials will require different amounts of work. Upon recording the amounts, you can infer a distribution . denotes the probability that the next trial will require an amount of work.

Measuring the system’s energy disturbs the system, squashing some of its quantum properties. (The measurement eliminates coherences, relative to the energy eigenbasis, from the state.) Quantum properties star in quantum thermodynamics. So the two-point measurement scheme doesn’t satisfy everyone.

Enter weak measurements. They can provide information about the system’s energy without disturbing the system much. Work probability distributions give way to quasiprobability distributions .

So propose Solinas and Gasparinetti, in these papers. Other quantum thermodynamicists apply weak measurements and quasiprobabilities differently.^{2} I proposed applying them to characterize chaos, and the scrambling of quantum information in many-body systems, at the conference.^{3} Feel free to add your favorite applications to the “comments” section.

Wednesday afforded an afternoon for touring. Participants congregated at the college of conference co-organizer Felix Binder.^{3} His tour evoked, for me, the ghosts of thermo conferences past: One conference, at the University of Cambridge, had brought me to the grave of thermodynamicist Arthur Eddington. Another conference, about entropies in information theory, had convened near Canada’s Banff Cemetery. Felix’s tour began with St. Edmund Hall’s cemetery. Thermodynamics highlights equilibrium, a state in which large-scale properties—like temperature and pressure—remain constant. Some things never change.

*With thanks to Felix, Janet, and the other coordinators for organizing the conference.*

^{1}Oxford derives its nickname from an elegy by Matthew Arnold. Happy National Poetry Month!

^{2}https://arxiv.org/abs/1508.00438, https://arxiv.org/abs/1610.04285,

https://arxiv.org/abs/1607.02404,

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.070601,

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.040602

^{3}Michele Campisi joined me in introducing out-of-time-ordered correlators (OTOCs) into the quantum-thermo conference: He, with coauthor John Goold, combined OTOCs with the two-point measurement scheme.

^{3}Oxford University contains 38 colleges, the epicenters of undergraduates’ social, dining, and housing experiences. Graduate students and postdoctoral scholars affiliate with colleges, and senior fellows—faculty members—govern the colleges.

There are two different branches to the origin story. The first was my personal motivation and the second is related to how I came into contact with my collaborators (who began working on the same project but with different motivation, namely to explain a phase transition described in this paper by Belin, Keller and Zadeh.)

During the first year of my PhD at Caltech I was working in the mathematics department and I had a few brief but highly influential interactions with Nikolai Makarov while I was trying to find a PhD advisor. His previous student, Stanislav Smirnov, had recently won a Fields Medal for his work studying Schramm-Loewner evolution (SLE) and I was captivated by the beauty of these objects.

One afternoon, I went to Professor Makarov’s office for a meeting and while he took a brief phone call I noticed a book on his shelf called Indra’s Pearls, which had a mesmerizing image on its cover. I asked Professor Makarov about it and he spent 30 minutes explaining some of the key results (which I didn’t understand at the time.) When we finished that part of our conversation Professor Makarov described this area of math as “math for the future, ahead of the tools we have right now” and he offered for me to borrow his copy. With a description like that I was hooked. I spent the next six months devouring this book which provided a small toehold as I tried to grok the relevant mathematics literature. This year or so of being obsessed with Kleinian groups (the underlying objects in Indra’s Pearls) comes back into the story soon. I also want to mention that during that meeting with Professor Makarov I was exposed to two other ideas that have driven my research as I moved from mathematics to physics: quasiconformal mappings and the simultaneous uniformization theorem, both of which will play heavy roles in the next paper I release. In other words, it was a pretty important 90 minutes of my life.

My life path then hit a discontinuity when I was recruited to work on a DARPA project, which led to taking an 18 month leave of absence from Caltech. It’s an understatement to say that being deployed in Afghanistan led to extreme introspection. While “down range” I had moments of clarity where I knew life was too short to work on anything other than ones’ deepest passions. Before math, the thing that got me into science was a childhood obsession with space and black holes. I knew that when I returned to Caltech I wanted to work on quantum gravity with John Preskill. I sent him an e-mail from Afghanistan and luckily he was willing to take me on as a student. But as a student in the mathematics department, I knew it would be tricky to find a project that involved all of: black holes (my interest), quantum information (John’s primary interest at the time) and mathematics (so I could get the degree.)

I returned to Caltech in May of 2012 which was only two months before the Firewall Paradox was introduced by Almheiri, Marolf, Polchinski and Sully. It was obvious that this was where most of the action would be for the next few years so I spent a great deal of time (years) trying to get sharp enough in the underlying concepts to be able to make comments of my own on the matter. Black holes are probably the closest things we have in Nature to the proverbial bottomless pit, which is an apt metaphor for thinking about the Firewall Paradox. After two years I was stuck. I still wasn’t close to confident enough with AdS/CFT to understand a majority of the promising developments. And then at exactly the right moment, in the summer of 2014, Preskill tipped my hat to a paper titled Multiboundary Wormholes and Holographic Entanglement by Balasubramanian, Hayden, Maloney, Marolf and Ross. It was immediately obvious to me that the tools of Indra’s Pearls (Kleinian groups) provided exactly the right language to study these “multiboundary wormholes.” But despite knowing a bridge could be built between these fields, I still didn’t have the requisite physics mastery (AdS/CFT) to build it confidently.

Before mentioning how I met my collaborators and describing the work we did together, let me first describe the worlds that we bridged together.

**3D Gravity and Universality**

As the media has sensationalized to death, one of the most outstanding questions in modern physics is to *discover* and then *understand* a theory of quantum gravity. As a quick aside, Quantum gravity is just a placeholder name for such a theory. I used italics because physicists have already *discovered* candidate theories, such as string theory and loop quantum gravity (I’m not trying to get into politics, just trying to demonstrate that there are multiple candidate theories). But *understanding* these theories — carrying out all of the relevant computations to confirm that they are consistent with Nature and then doing experiments to verify their novel predictions — is still beyond our ability. Surprisingly, without knowing the specific theory of quantum gravity that guides Nature’s hand, we’re still able to say a number of universal things that must be true for any theory of quantum gravity. The most prominent example being the holographic principle which comes from the entropy of black holes being proportional to the *surface area* encapsulated by the black hole’s horizon (a naive guess says the entropy should be proportional to the *volume *of the black hole; such as the entropy of a glass of water.) Universal statements such as this serve as guideposts and consistency checks as we try to understand quantum gravity.

It’s exceedingly rare to find universal statements that are true in physically realistic models of quantum gravity. The holographic principle is one such example but it pretty much stands alone in its power and applicability. By physically realistic I mean: 3+1-dimensional and with the curvature of the universe being either flat or very mildly positively curved. However, we can make additional simplifying assumptions where it’s easier to find universal properties. For example, we can reduce the number of spatial dimensions so that we’re considering 2+1-dimensional quantum gravity (3D gravity). Or we can investigate spacetimes that are negatively curved (anti-de Sitter space) as in the AdS/CFT correspondence. Or we can do BOTH! As in the paper that we just posted. The hope is that what’s learned in these limited situations will back-propagate insights towards reality.

The motivation for going to 2+1-dimensions is that gravity (general relativity) is much simpler here. This is explained eloquently in section II of Steve Carlip’s notes here. In 2+1-dimensions, there are no “local”/”gauge” degrees of freedom. This makes thinking about quantum aspects of these spacetimes much simpler.

The standard motivation for considering negatively curved spacetimes is that it puts us in the domain of AdS/CFT, which is the best understood model of quantum gravity. However, it’s worth pointing out that our results don’t rely on AdS/CFT. We consider negatively curved spacetimes (negatively curved Lorentzian manifolds) because they’re related to what mathematicians call hyperbolic manifolds (negatively curved Euclidean manifolds), and mathematicians know a great deal about these objects. It’s just a helpful coincidence that because we’re working with negatively curved manifolds we then get to unpack our statements in AdS/CFT.

**Multiboundary wormholes**

Finding solutions to Einstein’s equations of general relativity is a notoriously hard problem. Some of the more famous examples include: Minkowski space, de-Sitter space, anti-de Sitter space and Schwarzschild’s solution (which describes perfectly symmetrical and static black holes.) However, there’s a trick! Einstein’s equations only depend on the *local* curvature of spacetime while being insensitive to *global* topology (the number of boundaries and holes and such.) If ** M** is a solution of Einstein’s equations and is a discrete subgroup of the isometry group of , then the quotient space will also be a spacetime that solves Einstein’s equations! Here’s an example for intuition. Start with 2+1-dimensional Minkowski space, which is just a stack of flat planes indexed by time. One example of a “discrete subgroup of the isometry group” is the cyclic group generated by a single translation, say the translation along the x-axis by ten meters. Minkowski space quotiented by this group will also be a solution of Einstein’s equations, given as a stack of 10m diameter cylinders indexed by time.

D+1-dimensional Anti-de Sitter space () is the maximally symmetric d+1-dimensional Lorentzian manifold with negative curvature. Our paper is about 3D gravity in negatively curved spacetimes so our starting point is which can be thought of as a stack of Poincare disks (or hyperbolic sheets) with the time dimension telling you which disk (sheet) you’re on. The isometry group of is a group called which in turn is isomorphic to the group . The group isn’t a very common group but a single copy of is a very well-studied group. Discrete subgroups of it are called Fuchsian groups. Every element in the group should be thought of as a 2×2 matrix which corresponds to a Mobius transformation of the complex plane. The quotients that we obtain from these Fuchsian groups, or the larger isometry group yield a rich infinite family of new spacetimes, which are called multiboundary wormholes. Multiboundary wormholes have risen in importance over the last few years as powerful toy models when trying to understand how entanglement is dispersed near black holes (Ryu-Takayanagi conjecture) and for how the holographic dictionary works in terms of mapping operators in the boundary CFT to fields in the bulk (entanglement wedge reconstruction.)

I now want to work through a few examples.

**BTZ black hole: **this is the simplest possible example. It’s obtained by quotienting by a cyclic group , generated by a single matrix which for example could take the form . The matrix *A* acts by fractional linear transformation on the complex plane, so in this case the point gets mapped to . In this case

**Three boundary wormhole: **

There are many parameterizations that we can choose to obtain the three boundary wormhole. I’ll only show schematically how the gluings go. A nice reference with the details is this paper by Henry Maxfield.

**Torus wormhole: **

It’s simpler to write down generators for the torus wormhole; but following along with the gluings is more complicated. To obtain the three boundary wormhole we quotient by the free group where and . (Note that this is only one choice of generators, and a highly symmetrical one at that.)

**Lorentzian to Euclidean spacetimes**

So far we have been talking about negatively curved *Lorentzian* manifolds. These are manifolds that have a notion of both “time” and “space.” The technical definition involves differential geometry and it is related to the signature of the metric. On the other hand, mathematicians know a great deal about negatively curved *Euclidean* manifolds. Euclidean manifolds only have a notion of “space” (so no time-like directions.) Given a multiboundary wormhole, which by definition, is a quotient of where is a discrete subgroup of Isom(*), *there’s a procedure to analytically continue this to a Euclidean hyperbolic manifold of the form where is three dimensional hyperbolic space and is a discrete subgroup of the isometry group of , which is . This analytic continuation procedure is well understood for time-symmetric spacetimes but it’s subtle for spacetimes that don’t have time-reversal symmetry. A discussion of this subtlety will be the topic of my next paper. To keep this blog post at a reasonable level of technical detail I’m going to need you to take it on a leap of faith that to every Lorentzian 3-manifold multiboundary wormhole there’s an associated Euclidean hyperbolic 3-manifold. Basically you need to believe that given a discrete subgroup of there’s a procedure to obtain a discrete subgroup of . Discrete subgroups of are called Kleinian groups and quotients of by groups of this form yield hyperbolic 3-manifolds. These Euclidean manifolds obtained by analytic continuation arise when studying the thermodynamics of these spacetimes or also when studying correlation functions; there’s a sense in which they’re physical.

**TLDR: you start with a 2+1-d Lorentzian 3-manifold obtained as a quotient and analytic continuation gives a Euclidean 3-manifold obtained as a quotient where is 3-dimensional hyperbolic space and is a discrete subgroup of (Kleinian group.) **

**Limit sets: **

Every Kleinian group has a fractal that’s naturally associated with it. The fractal is obtained by finding the fixed points of every possible combination of generators and their inverses. Moreover, there’s a beautiful theorem of Patterson, Sullivan, Bishop and Jones that says the smallest eigenvalue of the spectrum of the Laplacian on the quotient Euclidean spacetime is related to the Hausdorff dimension of this fractal (call it ) by the formula . This smallest eigenvalue controls a number of the quantities of interest for this spacetime but calculating it directly is usually intractable. However, McMullen proposed an algorithm to calculate the Hausdorff dimension of the relevant fractals so we can get at the spectrum efficiently, albeit indirectly.

**What we did**

Our primary result is a generalization of the Hawking-Page phase transition for multiboundary wormholes. To understand the thermodynamics (from a 3d quantum gravity perspective) one starts with a fixed boundary Riemann surface and then looks at the contributions to the partition function from each of the ways to fill in the boundary (each of which is a hyperbolic 3-manifold). We showed that the expected dominant contributions, which are given by handlebodies, are unstable when the kinetic operator is negative, which happens whenever the Hausdorff dimension of the limit set of is greater than the lightest scalar field living in the bulk. One has to go pretty far down the quantum gravity rabbit hole (black hole) to understand why this is an interesting research direction to pursue, but at least anyone can appreciate the pretty pictures!

]]>Assyrian art fills a gallery in London’s British Museum. *Lamassu *flank the gallery’s entrance. Carvings fill the interior: depictions of soldiers attacking, captives trudging, and kings hunting lions. The artwork’s vastness, its endurance, and the contact with a three-thousand-year-old civilization floor me. I tore myself away as the museum closed one Sunday night.

I visited the British Museum the night before visiting Jonathan Oppenheim’s research group at University College London (UCL). Jonathan combines quantum information theory with thermodynamics. He and others co-invented thermodynamic resource theories (TRTs), which *Quantum Frontiers* regulars will know of. TRTs are quantum-information-theoretic models for systems that exchange energy with their environments.

Energy is conjugate to time: Hamiltonians, mathematical objects that represent energy, represent also translations through time. We measure time with clocks. Little wonder that one can study quantum clocks using a model for energy exchanges.

Mischa Woods, Ralph Silva, and Jonathan used a resource theory to design an autonomous quantum clock. “Autonomous” means that the clock contains all the parts it needs to operate, needs no periodic winding-up, etc. When might we want an autonomous clock? When building quantum devices that operate independently of classical engineers. Or when performing a quantum computation: Computers must perform logical gates at specific times.

Wolfgang Pauli and others studied quantum clocks, the authors recall. How, Pauli asked, would an ideal clock look? Its Hamiltonian, , would have eigenstates . The labels denote possible amounts of energy.

The Hamiltonian would be conjugate to a “time operator” . Let denote an eigenstate of . This “time state” would equal an even superposition over the ’s. The clock would occupy the state at time .

Imagine measuring the clock, to learn the time, or controlling another system with the clock. The interaction would disturb the clock, changing the clock’s state. The disturbance wouldn’t mar the clock’s timekeeping, if the clock were ideal. What would enable an ideal clock to withstand the disturbances? The ability to have any amount of energy: must stretch from to . Such clocks can’t exist.

Approximations to them can. Mischa, Ralph, and Jonathan designed a finite-size clock, then characterized how accurately the clock mimics the ideal. (Experts: The clock corresponds to a Hilbert space of finite dimensionality . The clock begins in a Gaussian state that peaks at one time state . The finite-width Gaussian offers more stability than a clock state.)

Disturbances degrade our ability to distinguish instants by measuring the clock. Imagine gazing at a kitchen clock through blurry lenses: You couldn’t distinguish 6:00 from 5:59 or 6:01. Disturbances also hinder the clock’s ability to implement processes, such as gates in a computation, at desired instants.

Mischa & co. quantified these degradations. The errors made by the clock, they found, decay inverse-exponentially with the clock’s size: Grow the clock a little, and the errors shrink a lot.

Time has degraded the *lamassu*, but only a little. You can distinguish feathers in their wings and strands in their beards. People portray such artifacts as having “withstood the flow of time,” or “evaded,” or “resisted.” Such portrayals have never appealed to me. I prefer to think of the *lamassu *as surviving not because they clash with time, but because they harmonize with it. The prospect of harmonizing with time—whatever that means—has enticed me throughout my life. The prospect partially underlies my research into time—perhaps childishly, foolishly—I recognize if I remove my blurry lenses before gazing in the mirror.

The creation of lasting works, like *lamassu*, has enticed me throughout my life. I’ve scrapbooked, archived, and recorded, and tended memories as though they were Great-Grandma’s cookbook. Ancient civilizations began alluring me at age six, partially due to artifacts’ longevity. No wonder I study the second law of thermodynamics.

Yet doing theoretical physics makes no sense from another perspective. The ancient Egyptians sculpted granite, when they could afford it. Gudea, king of the ancient city-state of Lagash, immortalized himself in diorite. I fashion ideas, which lack substance. Imagine playing, rather than rock-paper-scissors, granite-diorite-idea. The idea wouldn’t stand a chance.

Would it? Because an idea lacks substance, it can manifest in many forms. Plato’s cave allegory has manifested as a story, as classroom lectures, on handwritten pages, on word processors and websites, in cartloads of novels, in the film *The Matrix*, in one of the four most memorable advertisements I received from colleges as a high-school junior, and elsewhere. Plato’s allegory has survived since about the fourth century BCE. King Ashurbanipal’s lion-hunt reliefs have survived for only about 200 years longer.

The lion-hunt reliefs—and *lamassu*—exude a grandness, a majesty that’s attracted me as their longevity has. The nature of time and the perfect clock have as much grandness. Leaving the British Museum’s Assyrian gallery at 6 PM one Sunday, I couldn’t have asked for a more fitting location, 24 hours later, than in a theoretical-physics conversation.

*With thanks to Jonathan, to Álvaro Martín-Alhambra, and to Mischa for their hospitality at UCL; to Ada Cohen for the “Art history of ancient Egypt and the ancient Near East” course for which I’d been hankering for years; to my brother, for transmitting the ancient-civilizations bug; and to my parents, who fed the infection with museum visits.*

*Click here for **a follow-up to the quantum-clock paper.*

About Stephen Hawking.

My good friend

Explained how time can end.

And clued us in

On how time can begin.

Always droll,

He spoke about a hole:

“Now, wait a minute, Jack,

A black hole ain’t so black!”

Those immortal words he said,

Which millions now have duly read,

Hit physics like a ton of bricks.

Well, that’s how Stephen got his kicks.

Always grinning through his glasses,

He brought science to the masses,

Displayed a rare capacity

For humor and audacity.

And that’s why, on this somber day,

With relish we can gladly say:

“Thanks, Stephen, for the things you’ve done.

And most of all, thanks for the fun!”

And though there’s more to say, my friend,

This poem, too, must, sadly, end.

However, with that many physicists, you will find a few trying to make science cool, or at least having fun while they try. One relatively untapped market in my opinion is montages. Take the Imagine Dragons song Believer, whose music video has lead signer Dan Reynolds mostly getting his ass kicked by veteran brawler Dolph Lundgren. Who says that training montages can’t also be for mental training? Sub out Dan for a young graduate student, replace Dolph with an imposing physicist, and substitute boxing with drama about writing equations on paper or a blackboard. Don’t believe it can be cool? I don’t blame you, but science montages have been done before, playing to science’s mystical side. And with sufficient experience, creativity, and money, I believe the sky is the limit.

But back to more concrete things. Having fun while trying to promote science is the main goal of the March Meeting Rock ‘n Roll Physics Sing-Along — a social and outreach event where a band of musicians, mostly scientists attending the meeting, plays well-known songs whose lyrics are substituted for science-themed prose. The audience then sings the new technically oriented lyrics along with the performers. Below is an example with the Smashmouth song I’m a Believer, but we play all kinds of genres, from power ballads to Britney Spears.

This year, we have an especially exciting line-up as we are joined by professional science entertainer, Einstein’s girl Gia Mora! Some of you may remember Gia from her performance with John Preskill at One Entangled Evening. She will join us to perform, among other hits, the funky E=mc^2:

The sing-along is run by the curator of all things related to physics songs, singer and songwriter Prof. Walter F. Smith of Haverford College. Adept at using songs to help teach physics, Walter has carefully collected a database of such songs dating back to the early 20th century; he believes that James Clerk Maxwell may have been the first song parody-er with his version of the lyrics to the Scotch Air Comin’ Thro’ the Rye. You can see James jamming alongside Emmy Noether, Paul Dirac, and Satyendra Bose below to questionable lyrics. The most well-known US physics song pioneer is Harvard grad Tom Lehrer, who recorded his first album in the 50s. Contrary to the general nature of scientists to be constantly worried about preserving their neutral academic self-image, Lehrer tackled edgy topics with creativity and humor.

The sing-along started in 2006, where the only accompaniment was a guitar and bongo, growing into a full rock band later on. The drums were first played by a Soviet-born physicist named Victor, and that has yet to change today despite it being a different person. The rest of the band this year consists of Walter, his wife Marian McKenzie on the flute, Lev Krayzman from Yale on the guitar, Prof. Esa Räsänen from Tampere University of Technology on the bass, Lenny Campanello from the University of Maryland on the keyboard, and of course the talented Gia Mora on voice. We hope that you can join us next week, as this year’s sing-along is sure to be one for the books!

**March Meeting Rock-n-Roll Physics Sing-along**

Wednesday, March 7, 2018

9:00 PM–10:30 PM

J.W. Marriott Room: Platinum D

See you there!

]]>So relates the narrator of the short story “The Library of Babel*.”* The Argentine magical realist Jorge Luis Borges wrote the story in 1941.

Librarians are committing suicide partially because they can’t find the books they seek. The librarians are born in, and curate, a library called “infinite” by the narrator. The library consists of hexagonal cells, of staircases, of air shafts, and of closets for answering nature’s call. The narrator has never heard of anyone’s finding an edge of the library. Each hexagon houses 20 shelves, each of which houses 32 books, each of which contains 410 pages, each of which contains 40 lines, each of which consists of about 80 symbols. Every symbol comes from a set of 25: 22 letters, the period, the comma, and the space.

The library, a sage posited, contains every combination of the 25 symbols that satisfy the 410-40-and-80-ish requirement. His compatriots rejoiced:

*All men felt themselves to be the masters of an intact and secret treasure. There was no personal or world problem whose eloquent solution did not exist in some hexagon. [ . . . ] a great deal was said about the Vindications: books of apology and prophecy which vindicated for all time the acts of every man in the universe and retained prodigious arcana for his future. Thousands of the greedy abandoned their sweet native hexagons and rushed up the stairways, urged on by the vain intention of finding their Vindication.*

Probability punctured their joy: “the possibility of a man’s finding his Vindication, or some treacherous variation thereof, can be computed as zero.”

Many-body quantum physicists can empathize with Borges’s librarian.

A handful of us will huddle over a table or cluster in front of a chalkboard.

“Has anyone found this Hamiltonian’s ground space?” someone will ask.^{1}

A Hamiltonian is an observable, a measurable property. Consider a quantum system *S*, such as a set of particles hopping between atoms. We denote the system’s Hamiltonian by *H*. *H* determines how the system’s state changes in time. A musical about *H* swept Broadway last year.

A quantum system’s energy, *E*, might assume any of many possible values. *H* encodes the possible values. The least possible value, *E*_{0}*,* we call *the ground-state energy*.

Under what condition does *S* have an amount *E*_{0}* *of energy? *S* must occupy a *ground state*. Consider Olympic snowboarder Shaun White in a half-pipe. He has kinetic energy, or energy of motion, when sliding along the pipe. He gains gravitational energy upon leaving the ground. He has little energy when sitting still on the snow. A quantum analog of that sitting constitutes a ground state.^{2}

Consider, for example, electrons in a magnetic field. Each electron has a property called *spin*, illustrated with an arrow. The arrow’s direction represents the spin’s state. The system occupies a ground state when every arrow points in the same direction as the magnetic field.

Shaun White has as much energy, sitting on the ground in the half-pipe’s center, as he has sitting at the bottom of an edge of the half-pipe. Similarly, a quantum system might have multiple ground states. These states form the* ground space.*

“Has anyone found this Hamiltonian’s ground space?”

“Find” means, here,“identify the form of.” We want to derive a mathematical expression for the quantum analog of “sitting still, at the bottom of the half-pipe.”

“Find” often means “locate.” How do we locate an object such as a library? By identifying its spatial coordinates. We specify coordinates relative to directions, such as north, east, and up. We specify coordinates also when “finding” ground states.

Libraries occupy the physical space we live in. Ground states occupy an abstract mathematical space, a *Hilbert space*. The Hilbert space consists of the (pure) quantum states accessible to the system—loosely speaking, how the spins can orient themselves.

Libraries occupy a three-dimensional space. An *N*-spin system corresponds to a 2* ^{N}*-dimensional Hilbert space. Finding a ground state amounts to identifying 2

An exponential quantifies also the size of the librarian’s problem. Imagine trying to locate some book in the Library of Babel. How many books should you expect to have to check? How many books does the library hold? Would you have more hope of finding the book, wandering the Library of Babel, or finding a ground state, wandering the Hilbert space? (Please take this question with a grain of whimsy, not as instructions for calculating ground states.)

A book’s first symbol has one of 25 possible values. So does the second symbol. The pair of symbols has one of possible values. A trio has one of possible values, and so on.

How many symbols does a book contain? About or a million. The number of books grows exponentially with the number of symbols per book: The library contains about books. You contain only about atoms. No wonder librarians are committing suicide.

Do quantum physicists deserve more hope? Physicists want to find ground states of chemical systems. Example systems are discussed here* *and here. The second paper refers to 65 electrons distributed across 57 orbitals (spatial regions). How large a Hilbert space does this system have? Each electron has a spin that, loosely speaking, can point upward or downward (that corresponds to a two-dimensional Hilbert space). One might expect each electron to correspond to a Hilbert space of dimensionality . The 65 electrons would correspond to a Hilbert space of dimensionality .

But no two electrons can occupy the same one-electron state, due to Pauli’s exclusion principle. Hence has dimensionality (“114 choose 65″), the number of ways in which you can select 65 states from a set of 114 states.

equals approximately . Mathematica (a fancy calculator) can print a one followed by 34 zeroes*. *Mathematica refuses to print the number of Babel’s books. Pity the librarians more than the physicists.

Pity us less when we have quantum computers (QCs). They could find ground states far more quickly than today’s supercomputers. But building QCs is taking about as long as Borges’s narrator wandered the library, searching for “the catalogue of catalogues.”

What would Borges and his librarians make of QCs? QCs will be able to search unstructured databases quickly, via Grover’s algorithm. Babel’s library lacks structure. Grover’s algorithm outperforms classical algorithms just when fed large databases. books constitute a large database. Researchers seek a “killer app” for QCs. Maybe Babel’s librarians could vindicate quantum computing and quantum computing could rescue the librarians. If taken with a grain of magical realism.

^{1}Such questions remind me of an Uncle Alfred who’s misplaced his glasses. I half-expect an Auntie Muriel to march up to us physicists. She, sensible in plaid, will cross her arms.

“Where did you last see your ground space?” she’ll ask. “Did you put it on your dresser before going to bed last night? Did you use it at breakfast, to read the newspaper?”

We’ll bow our heads and shuffle off to double-check the kitchen.

^{2}More accurately, a ground state parallels Shaun White’s lying on the ground, stone-cold.

**How I first learned about Fractons**

Back in the early 2000s, a question that kept attracting and frustrating people in quantum information is how to build a quantum hard drive to store quantum information. This is of course a natural question to ask as quantum computing has been demonstrated to be possible, at least in theory, and experimental progress has shown great potential. It turned out, however, that the question is one of those deceptively enticing ones which are super easy to state, but extremely hard to answer. In a classical hard drive, information is stored using magnetism. Quantum information, instead of being just 0 and 1, is represented using superpositions of 0 and 1, and can be probed in non-commutative ways (that is, measuring along different directions can alter previous answers). To store quantum information, we need “magnetism” in all such non-commutative channels. But how can we do that?

At that time, some proposals had been made, but they either involve actively looking for and correcting errors throughout the time during which information is stored (which is something we never have to do with our classical hard drives) or going into four spatial dimensions. Reliable passive storage of quantum information seemed out of reach in the three-dimensional world we live in, even at the level of a proof of principle toy model!

Given all the previously failed attempts and without a clue about where else to look, this problem probably looked like a dead-end to many. But not to Jeongwan Haah, a fearless graduate student in Preskill’s group at IQIM at that time, who turned the problem from guesswork into a systematic computer search (over a constrained set of models). The result of the search surprised everyone. Jeongwan found a three-dimensional quantum spin model with physical properties that had never been seen before, making it a better quantum hard drive than any other model that we know of!

The model looks surprising not only to the quantum information community, but even more so to the condensed matter community. It is a strongly interacting quantum many-body model, a subject that has been under intense study in condensed matter physics. Yet it exhibits some very strange behaviors whose existence had not even been suspected. It is a condensed matter discovery made not from real materials in real experiments, but through computer search!

In condensed matter systems, what we know can happen is that elementary excitations can come in the form of point particles – usually called quasi-particles – which can then move around and interact with other excitations. In Jeongwan’s model, now commonly referred to as Haah’s code, elementary excitations still come in the form of point particles, but they cannot freely move around. Instead, if they want to move, four of them have to coordinate with each other to move together, so that they stay at the vertices of a fractal shaped structure! The restricted motion of the quasi-particles leads to slower dynamics at low energy, making the model much better suited for the purpose of storing quantum information.

But how can something like this happen? This is the question that I want to yell out loud every time I read Jeongwan’s papers or listen to his talks. Leaving aside the motivation of building a quantum hard drive, this model presents a grand challenge to the theoretical framework we now have in condensed matter. All of our intuitions break down in predicting the behavior of this model; even some of the most basic assumptions and definitions do not apply.

I felt so uncomfortable and so excited at the same time because there was something out there that should be related to things I know, yet I totally did not understand how. And there was an even bigger problem. I was like a sick person going to a doctor but unable to pinpoint what was wrong. Something must have been wrong, but I didn’t know what that was and I didn’t know how to even begin to look for it. The model looked so weird. Interaction involved eight spins at a time; there was no obvious symmetry other than translation. Jeongwan, with his magic math power, worked out explicitly many of the amazing properties of the model, but that to me only added to the mystery. Where did all these strange properties coming from?

**From the unfathomable to the seemingly approachable**

I remained in this superposition of excited state and powerless state for several years, until Jeongwan moved to MIT and posted some papers with Sagar Vijay and Liang Fu in 2015 and 2016.

In these papers, they listed several other models, which, similar to Haah’s code, contain quasi-particle excitations whose motion is constrained. The constraints are weaker and these models do not make good quantum hard drives, but they still represent new condensed matter phenomena. What’s nice about these models is that the form of interaction is more symmetric, takes a simpler form, or is similar to some other models we are familiar with. The quasi-particles do not need a fractal-shaped structure to move around, instead they move along a line, in a plane, or at the corner of a rectangle. In fact, as early as 2005 – six years before Haah’s code, Claudio Chamon at Boston University already proposed a model of this kind. Together with the previous fractal examples, these models are what’s now being referred to as the fracton models. If the original Haah’s code looks like an ET from beyond the milky way, these models at least seem to live somewhere in the solar system. So there must be something that we can do to understand them better!

Obviously, I was not the only one who felt this way. A flurry of papers appeared on these “fracton” models. People came at these models armed with their favorite tools in condensed matter, looking for an entry point to crack them open. The two approaches that I found most attractive was the coupled layer construction and the higher rank gauge theory, and I worked on these ideas together with Han Ma, Ethan Lake and Michael Hermele. Each approach comes from a different perspective and establishes a connection between fractons and physical models that we are familiar with. In the coupled layer construction, the connection is to the 2D discrete gauge theories, while in the higher rank approach it is to the 3D gauge theory of electromagnetism.

I was excited about these results. They each point to simple physical mechanisms underlying the existence of fractons in some particular models. By relating these models to things I already know, I feel a bit relieved. But deep down, I know that this is far from the complete story. Our understanding barely goes beyond the particular models discussed in the paper. In condensed matter, we spend a lot of time studying toy models; but toy models are not the end goal. Toy models are only meaningful if they represent some generic feature in a whole class of models. It is not clear at all to what extent this is the case for fractons.

**Step zero: define “order”, define “topological order”**

I gave a talk about these results at KITP last fall under the title “Fracton Topological Order”. It was actually too big a title because all we did was to study specific realizations of individual models and analyze their properties. To claim topological order, one needs to show much more. The word “order” refers to the common properties of a continuous range of models within the same phase. For example, crystalline order refers to the regular lattice organization of atoms in the solid phase within a continuous range of temperature and pressure. When the word “topological” is added in front of “order”, it signifies that such properties are usually directly related to the topology of the system. A prototypical example is the fractional quantum Hall system, whose ground state degeneracy is directly determined by the topology of the manifold the system lives in. For fractons, we are far from an understanding at this level. We cannot answer basic questions like what range of models form a phase, what is the order (the common properties of this whole range of models) characterizing each phase, and in what sense is the order topological. So, the title was more about what I hope will happen than what has already happened.

But it did lead to discussions that could make things happen. After my talk, Zhenghan Wang, a mathematician at Microsoft Station Q, said to me, “I would agree these fracton models are topological if you can show me how to define them on different three manifolds”. Of course! How can I claim anything related to topology if all I know is one model on a cubic lattice with periodic boundary condition? It is like claiming a linear relation between two quantities with only one data point.

But how to get more data points? Well, from the paper by Haah, Vijay and Fu, we knew how to define the model on cubic lattices. With periodic boundary conditions, the underlying manifold is a three torus. Is it possible to have a cubic lattice, or something similar, in other three manifolds as well? Usually, this kind of request would be too much to ask. But it turns out that if you whisper your wish to the right mathematician, even the craziest ones can come true. With insightful suggestions from Michael Freedman (the Fields medalist leading Station Q) and Zhenghan, and through the amazing work of Kevin Slagle (U Toronto) and Wilbur Shirley (Caltech), we found that if we make use of a structure called Total Foliation, one of the fracton models can be generalized to different kinds of three manifolds and we can see how the properties of the model are related to certain topological features of the manifold!

Foliation is the process of dividing a manifold into parallel planes. Total foliation is a set of three foliations which intersect each other in a transversal way. The xy, yz, and zx planes in a cubic lattice form a total foliation and similar constructions can be made for other three manifolds as well.

Things start to get technical from here, but the basic lesson we learned about some of the fracton models is that structural-wise, they pretty much look like an onion. Even though onions look like a three-dimensional object from the outside, they actually grow in a layered structure. Some of the properties of the fracton models are simply determined by the layers, and related

to the topology of the layers. Once we peel off all the layers, we find that for some, there is nothing left while for others, there is a nontrivial core. This observation allows us to better address the previous questions: we defined a fracton phase (one type of it) as models smoothly related to each other after adding or removing layers; the topological nature of the order is manifested in how the properties of the model are determined by the topology of the layers.

The onion structure is nice, because it allows us to reduce much of the story from 3D to 2D, where we understand things much better. It clarifies many of the weirdnesses of the fracton model we studied, and there is indication that it may apply to a much wider range of fracton models, so we have an exciting road ahead of us. On the other hand, it is also clear that the onion structure does not cover everything. In particular, it does not cover Haah’s code! Haah’s code cannot be built in a layered way and its properties are in a sense intrinsically three dimensional. So, after finishing this whole journey through the onion field, I will be back to staring at Haah’s code again and wondering what to do with it, like what I have been doing in the eight years since Jeongwan’s paper first came out. But maybe this time I will have some better ideas.

]]>*Don Quixote *might have sold more copies than any other novel in history.* *Historians have dubbed *Don Quixote* “the first modern novel”; “quixotic” appears in English dictionaries; and artists and writers still spin off the story. *Don Quixote* reverberates throughout the 500 years that have followed it.

Cervantes, I discovered, had grasped a paradox that mathematicians had exposed last century.

Don Quixote will vanquish so many villains, the pair expects, rulers will shower gifts on him. Someone will bequeath him a kingdom or an empire. Don Quixote promises to transfer part of his land to Sancho. Sancho expects to govern an ínsula, or island.

Sancho’s expectation amuses a duke and duchess. They pretend to grant Sancho an ínsula as a joke. How would such a simpleton rule? they wonder. They send servants and villagers to Sancho with fabricated problems. Sancho arbitrates the actors’ cases. Grossman translates one case as follows:

the first [case] was an engima presented to him by a stranger, who said:

“Señor, a very large river divided a lord’s lands into two parts [ . . . ] a bridge crossed this river, and at the end of it was a gallows and a kind of tribunal hall in which there were ordinarily four judges who applied the law set down by the owner of the river, the bridge, and the lands, which was as follows: ‘If anyone crosses this bridge from one side to the other, he must first take an oath as to where he is going and why; and if he swears the truth, let him pass; and if he tells a lie, let him die by hanging on the gallows displayed there, with no chance of pardon.’ Knowing this law and its rigorous conditions, many people crossed the bridge, and then, when it was clear that what they swore was true, the judges let them pass freely. It so happened, then, that a man once took the oath, and he swore and said that because of the oath he was going to die on the gallows, and he swore to nothing else. The judges studied the oath and said: ‘If we allow this man to pass freely, he lied in his oath, and according to the law he must die; and if we hang him, he swore that he was going to die on this gallows, and having sworn the truth, according to the same law he must go free.’ Señor Governor, the question for your grace is what should the judges do with the man.”

Cervantes formulated a paradox that looks, to me, equivalent to *Russell’s barber paradox*. Bertrand Russell contributed to philosophy during the early 1900s. He concocted an argument called the *Russell-Zermelo paradox*, which I’ll describe later. An acquaintance tried to encapsulate the paradox as follows: Consider an adult male barber who shaves all men who do not shave themselves. Does the barber shave himself?

Suppose that the barber doesn’t. (Analogously, suppose that the smart aleck in Panza’s paradox doesn’t lie.) The barber is a man whom the barber shaves. (The smart aleck must survive.) Hence the barber must shave himself. (Hence the traveler lies.) But we assumed that the barber doesn’t shave himself. (But we assumed that the traveler doesn’t lie.) Stalemate.

*A barber plays a role in *Don Quixote* as in the Russell-Zermelo-like paradox. But the former barber has a wash basin that Don Quixote mistakes for a helmet.*

Philosophers and mathematicians have debated to what extent the barber paradox illustrates the *Russell-Zermelo paradox*. Russell formulated the paradox in 1902. The mathematician Ernst Zermelo formulated the paradox around the same time. Mathematicians had just developed the field of *set theory.* A *set* is a collection of objects. Examples include the set of positive numbers, the set of polygons, and the set of readers who’ve looked at a *Quantum Frontiers* post.

Russell and Zermelo described a certain set of sets, a certain collection of sets. Let’s label the second-tier sets etc.

Each second-tier set can contain elements. The elements can include third-tier sets etc.

But no third-tier set equals the second-tier set . That is, no second-tier set is element of itself.

Let contain every set that does not contain itself. Does the first-tier set contain itself?

Suppose that it does: for some . is an element of itself. But, we said, “no second-tier set is an element of itself.” So must not be an element of itself. But “contain[s] every set that does not contain itself.” So must contain itself. But we just concluded that doesn’t. Stalemate.

The *Stanford Encyclopedia of Philosophy* synopsizes the Russell-Zermelo paradox: “the paradox arises within naïve set theory by considering the set of all sets that are not members of themselves. Such a set appears to be a member of itself if and only if it is not a member of itself.”

One might resolve the Russell-Zermelo paradox by concluding that no set exists. One might resolve the barber paradox by concluding that no such barber exists. How does Sancho resolve what I’ll dub *Panza’s paradox*?

He initially decrees, “‘let the part of the man that swore the truth pass freely, and hang the part that told a lie.’”^{1} The petitioner protests: Dividing the smart aleck will kill him. But the law suggests that the smart aleck should live.

Sancho revises his decree:

“since the reasons for condemning him or sparing him are balanced perfectly, they should let him pass freely, for doing good is always more praiseworthy than doing evil, and I’d sign this with my own name if I knew how to write, and in this case I haven’t said my own idea but a precept that came to mind, one of many that was given to me by my master, Don Quixote [ . . . ] when the law is in doubt, I should favor and embrace mercy.”

One can resolve the barber’s paradox by concluding that such a barber cannot exist. Sancho resolves Panza’s paradox by concluding that the landowner’s law cannot govern all bridge-crossings. The law lacks what computer scientists would call an “edge case.” An edge case falls outside the jurisdiction of the most-often-used part of a rule. One must specify explicitly how to process edge cases, when writing computer programs. Sancho codes the edge case, supplementing the law.

Upon starting to read about Sancho’s trial, I sat bolt upright. I ran to my laptop upon finishing. Miguel de Cervantes had intuited, during the 1600s, a paradox not articulated by mathematicians until the 1900s. Surely, the literati had pounced on Cervantes’s foresight?

Mathematics writer Martin Gardner had. I found also two relevant slides in a Powerpoint and three relevant pages in an article. But more critics classified Panza’s paradox as an incarnation of the liar’s paradox than invoked Russell.

Scholars have credited Cervantes with anticipating, and initiating, literary waves that have propagated for four centuries. Perhaps we should credit him with anticipating mathematics not formalized for three.

^{1}This decree evokes the story of King Solomon and the baby. Two women bring a baby to King Solomon. Each woman claims the baby as hers. “Cut the baby in two,” Solomon rules, “and give half to each woman.” One woman assents. The other cries, “No! Let her have the child; just don’t kill the baby.” The baby, Solomon discerns, belongs to the second woman. A mother would rather see her child in someone else’s home than see her child killed. Sancho, like Solomon, rules that someone be divided in two. But Sancho, lacking Solomon’s wisdom, misapplies Solomon’s tactic.

How did a quantum physics experiment end up looking like a night club? Due to a fortunate coincidence of nature, my lab mates and I at Endres Lab get to use three primary colors of laser light – red, blue, and green – to trap strontium atoms. Let’s take a closer look at the physics behind this visually entrancing combination.

**The spectrum**

The trick to research is finding a problem that is challenging enough to be interesting, but accessible enough to not be impossible. Strontium embodies this maxim in its electronic spectrum. While at first glance it may seem daunting, it’s not too bad once you get to know each other. Two valence electrons divide the spectrum into a spin-singlet sector and a spin-triplet sector – a designation that roughly defines whether the electron spins point in the opposite or in the same direction. Certain transitions between these sectors are extremely precisely defined, and currently offer the best clock standards in the world. Although navigating this spectrum requires more lasers, it offers opportunities for quantum physics that singly-valent spectra do not. In the end, the experimental complexity is still very much manageable, and produces some great visuals to boot. Here are some of the lasers we use in our lab:

**The blue**

At the center of the .gif above is a pulsating cloud of strontium atoms, shining brightly blue. This is a magneto-optical trap, produced chiefly by strontium’s blue transition at 461nm.

The blue transition is exceptionally strong, scattering about 100 million photons per atom per second. It is the transition we use to slow strontium atoms from a hot thermal beam traveling at hundreds of meters per second down to a cold cloud at about 1 milliKelvin. In less than a second, this procedure gives us a couple hundred million atoms to work with. As the experiment repeats, we get to watch this cloud pulse in and out of existence.

**The red(s)**

While the blue transition is a strong workhorse, the red transition at 689nm trades off strength for precision. It couples strontium’s spin-singlet ground state to an excited spin-triplet state, a much weaker but more precisely defined transition. While it does not scatter as fast as the blue (only about 23,000 photons per atom per second), it allows us to cool our atoms to much colder temperatures, on the order of 1 microKelvin.

In addition to our red laser at 689nm, we have two other reds at 679nm and 707nm. These are necessary to essentially plug “holes” in the blue transition, which eventually cause an atom to fall into long-lived states other than the ground state. It is generally true that the more complicated an atomic spectrum gets, the more “holes” there are to plug, and this is many times the reason why certain atoms and molecules are harder to trap than others.

**The green**

After we have established a cold magneto-optical trap, it is time to pick out individual atoms from this cloud and load them into very tightly focused optical traps that we call tweezers. Here, our green laser comes into play. This laser’s wavelength is far away from any particular transition, as we do not want it to scatter any photons at all. However, its large intensity creates a conservative trapping potential for the atom, allowing us to hold onto it and even move it around. Furthermore, its wavelength is what we call “magic”, which means it is chosen such that the ground and excited state experience the same trapping potential.

**The invisible**

Yet to be implemented are two more lasers slightly off the visible spectrum at both the ultraviolet and infrared sides. Our ultraviolet laser will be crucial to elevating our experiment from single-body to many-body quantum physics, as it will allow us to drive our atoms to very highly excited Rydberg states which interact with long range. Our infrared laser will allow us to trap atoms in the extremely precise clock state under “magic” conditions.

The combination of strontium’s various optical pathways allows for a lot of new tricks beyond just cooling and trapping. Having Rydberg states alongside narrow-line transitions, for example, has yet unexplored potential for quantum simulation. It is a playground that is very exciting without being utterly overwhelming. Stay tuned as we continue our exploration – maybe we’ll have a yellow laser next time too.

]]>