Sultana: The Girl Who Refused To Stop Learning

Sultana at Caltech, Pasadena, CA

Caltech attracts some truly unique individuals from all across the globe with a passion for figuring things out. But there was one young woman on campus this past summer whose journey towards scientific research was uniquely inspiring.

Sultana spent the summer at Caltech in the SURF program, working on next generation quantum error correction codes under the supervision of Dr. John Preskill. As she wrapped up her summer project, returning to her “normal” undergraduate education in Arizona, I had the honor of helping her document her remarkable journey. This is her story:

Afghanistan

My name is Sultana. I was born in Afghanistan. For years I was discouraged and outright prevented from going to school by the war. It was not safe for me because of the active war and violence in the region, even including suicide bombings. Society was still recovering from the decades long civil war, the persistent influence of a dethroned, theocratically regressive regime and the current non-functioning government. These forces combined to make for a very insecure environment for a woman. It was tacitly accepted that the only place safe for a woman was to remain at home and stay quiet. Another consequence of these circumstances was that the teachers at local schools were all male and encouraged the girls to not come to school and study. What was the point if at the end of the day a woman’s destiny was to stay at home and cook? 

For years, I would be up every day at 8am and every waking hour was devoted to housework and preparing the house to host guests, typically older women and my grandmother’s friends. I was destined to be a homemaker and mother. My life had no meaning outside of those roles.

My brothers would come home from school, excited about mathematics and other subjects. For them, it seemed like life was full of infinite possibilities. Meanwhile I had been confined to be behind the insurmountable walls of my family’s compound. All the possibilities for my life had been collapsed, limited to a single identity and purpose.

At fourteen I had had enough. I needed to find a way out of the mindless routine and depressing destiny. And more specifically, I wanted to understand how complex, and clearly powerful, human social systems, such as politics, economics and culture, combined to create overtly negative outcomes like imbalance and oppression. I made the decision to wake up two hours early every day to learn English, before taking on the day’s expected duties.

My grandfather had a saying, “If you know English, then you don’t have to worry about where the food is going to come from.”

He taught himself English and eventually became a professor of literature and humanities. He had even encouraged his five daughters to pursue advanced education. My aunts became medical doctors and chemists (one an engineer, another a teacher). My mother became a lecturer at a university, a profession she would be forced to leave when the Mujaheddin came to power.

I started by studying newspapers and any book I could get my hands on. My hunger for knowledge proved insatiable.

When my father got the internet, the floodgates of information opened. I found and took online courses through sites like Khan Academy and, later, Coursera.

I was intrigued by discussions between my brothers on mathematics. Countless pages of equations and calculations could propagate from a single, simple question; just like how a complex and towering tree can emerge from a single seed.

Khan Academy provided a superbly structured approach to learning mathematics from scratch. Most importantly, mathematics did not rely on a mastery of English as a prerequisite.

Over the next few years I consumed lesson after lesson, expanding my coursework into physics. I would supplement this unorthodox yet structured education with a more self-directed investigation into philosophy through books like Kant’s Critique of Pure Reason. While math and physics helped me develop confidence and ability, ultimately, I was still driven by trying to understand the complexities of human behavior and social systems.

Sultana & EmilyEmily from Iowa

To further develop my hold on English I enrolled in a Skype-based student exchange program and made a critical friend in Emily from Iowa. After only a few conversations, Emily suggested that my English was so good that I should consider taking the SAT and start applying for schools. She soon became a kind of college counselor for me.

Even though my education was stonewalled by an increasingly repressive socio-political establishment, I had the full support of my family. There were no SAT testing locations in Afghanistan. So when it was clear to my family I had the potential to get a college education, my uncle took me across the border into Pakistan, to take the SAT. However, a passport from Afghanistan was required to take the test and, when it was finally granted, it had to be smuggled across the border. Considering that I had no formal education and little time to study for the SAT, I earned a surprisingly competitive score on the exam.

My confidence soared and I convinced my family to make the long trek to the American embassy and apply for a student visa. I was denied in less than sixty seconds! They thought I would end up not studying and becoming an economic burden. I was crushed. And my immaturely formed vision of the world was clearly more idealized than the reality that presented itself and slammed its door in my face. I was even more confused by how the world worked and I immediately became invested in understanding politics.

The New York Times

Emily was constantly working in the background on my behalf, and on the other side of the world, trying to get the word out about my struggle. This became her life’s project, to somehow will me into a position to attend a university. New York Times writer Nicholas Kristoff heard about my story and we conducted an interview over Skype. The story was published in the summer of 2016.

The New York Times opinion piece was published in June. Ironically, I didn’t have much say or influence on the opinion-editorial piece. I felt that the piece was overly provocative.

Even now, because family members still live under the threat of violence, I will not allow myself to be photographed. Suffice to say, I never wanted to stir up trouble, or call attention to myself. Even so, the net results of that article are overwhelmingly positive. I was even offered a scholarship to attend Arizona State University; that was, if I could secure a visa.

I was pessimistic. I had been rejected twice already by what should have been the most logical and straightforward path towards formal education in America. How was this special asylum plea going to result in anything different? But Nicholas Kristoff was absolutely certain I would get it. He gave my case to an immigration lawyer with a relationship to the New York Times. In just a month and a half I was awarded humanitarian parole. This came with some surprising constraints, including having to fly to the U.S. within ten days and a limit of four months to stay there while applying for asylum. As quickly as events were unfolding, I didn’t even hesitate.

As I was approaching America, I realized that over 5,000 miles of water would now separate me from the most influential forces in my life. The last of these flights took me deep into the center of America, about a third of the way around the planet.

The clock was ticking on my time in America – at some point, factors and decisions outside of my control would deign that I was safe to go back to Afghanistan – so I exhausted every opportunity to obtain knowledge while I was isolated from the forces that would keep me from formal education. I petitioned for an earlier than expected winter enrollment at Arizona State University. In the meantime, I continued my self-education through edX classes (coursework from MIT made available online), as well as with Khan Academy and Coursera.

Camelback Mountain overlooking Phoenix, AZ

Phoenix

The answer came back from Arizona State University. They had granted me enrollment for the winter quarter. In December of 2016, I flew to the next state in my journey for intellectual independence and began my first full year of formal education at the largest university in America. Mercifully, my tenure in Phoenix began in the cool winter months. In fact, the climate was very similar to what I knew in Afghanistan.

However, as summer approached, I began to have a much different experience. This was the first time I was living on my own. It took me a while to be accustomed to that. I would generally stay in my room and study, even avoiding classes. The intensifying heat of the Arizona sun ensured that I would stay safely and comfortably encased inside. And I was actually doing okay. At first.

Happy as I was to finally be a part of formal education, it was in direct conflict with the way in which I had trained myself to learn. The rebellious spirit which helped me defy the cultural norms and risk harm to myself and my family, the same fire that I had to continuously stoke for years on my own, also made me rebel against the system that actively wanted me to learn. I constantly felt that I had better approaches to absorb the material and actively ignored the homework assignments. Naturally, my grades suffered and I was forced to make a difficult internal adjustment. I also benefited from advice from Emily, as well as a cousin who was pursuing education in Canada.

As I gritted my teeth and made my best attempts to adopt the relatively rigid structures of formal education, I began to feel more and more isolated. I found myself staying in my room day after day, focused simply on studying. But for what purpose? I was aimless. A machine of insatiable learning, but without any specific direction to guide my curiosity. I did not know it at the time, but I was desperate for something to motivate me.

The ripples from the New York Times piece were still reverberating and Sultana was contacted by author Betsy Devine. Betsy was a writer who had written a couple of books with notable scientists. Betsy was particularly interested in introducing Sultana to her husband, Nobel prize winner in physics, Frank Wilczek.

The first time I met Frank Wilczek was at lunch with with him and his wife. Wilczek enjoys hiking in the mountains overlooking surrounding Phoenix and Betsy suggested that I join Frank on an early morning hike. A hike. With Frank Wilczek. This was someone whose book, A Beautiful Question: Finding Nature’s Deep Design, I had read while in Afghanistan. To say that I was nervous is an understatement, but thankfully we fell into an easy flow of conversation. After going over my background and interests he asked me if I was interested in physics. I told him that I was, but I was principally interested in concepts that could be applied very generally, broadly – so that I could better understand the underpinnings of how society functions.

He told me that I should pursue quantum physics. And more specifically, he got me very excited about the prospects of quantum computers. It felt like I was placed at the start of a whole new journey, but I was walking on clouds. I was filled with a confidence that could only be generated by finding oneself comfortable in casual conversation with a Nobel laureate.

Immediately after the hike I went and collected all of the relevant works Wilczek had suggested, including Dirac’s “The Principles of Quantum Mechanics.”

Reborn

With a new sense of purpose, I immersed myself in the formal coursework, as well as my own, self-directed exploration of quantum physics. My drive was rewarded with all A’s in the fall semester of my sophomore year.

That same winter Nicholas Kristoff had published his annual New York Times opinion review of the previous year titled, “Why 2017 Was the Best Year in Human History.” I was mentioned briefly.

It was the start of the second semester of my sophomore year, and I was starting to feel a desire to explore applied physics. I was enrolled in a graduate-level seminar class in quantum theory that spring. One of the lecturers for the class was a young female professor who was interested in entropy, and more importantly, how we can access seemingly lost information. In other words, she wanted access to the unknown.

To that end, she was interested in gauge/gravity duality models like the one meant to explain the black hole “firewall” paradox, or the Anti-de Sitter space/conformal field theory (AdS/CFT) correspondence that uses a model of the universe where space-time has negative, hyperbolic curvature.

The geometry of 5D space-time in AdS space resembles that of an M.C.Escher drawing, where fish wedge themselves together, end-to-end, tighter and tighter as we move away from the origin. These connections between fish are consistent, radiating in an identical pattern, infinitely approaching the edge.

Unbeknownst to me, a friend of that young professor had read the Times opinion article. The article not only mentioned that I had been teaching myself string theory, but also that I was enrolled at Arizona State University and taking graduate level courses. She asked the young professor if she would be interested in meeting me.

The young professor invited me to her office, she told me about how black holes were basically a massive manifestation of entropy, and the best laboratory by which to learn the true nature of information loss, and how it might be reversed. We discussed the possibility of working on a research paper to help her codify the quantum component for her holographic duality models.

I immediately agreed. If there was anything in physics as difficult as understanding human social, religious and political dynamics, it was probably understanding the fundamental nature of space and time. Because the AdS/CFT model of spacetime was negatively curved, we could employ something called holographic quantum error correction to create a framework by which the information of a bulk entity (like a black hole) can be preserved at its boundary, even with some of its physical components (particles) becoming corrupted, or lost.

I spent the year wrestling with, and developing, quantum error correcting codes for a very specific kind of black hole. I learned that information has a way of protecting itself from decay through correlations. For instance, a single logical quantum bit (or “qubit”) of information can be represented, or preserved, by five stand-in, or physical, qubits. At a black hole’s event horizon, where entangled particles are pulled apart, information loss can be prevented as long as less than three-out-of-five of the representative physical qubits are lost to the black hole interior. The original quantum information can be recalled by using a quantum code to reverse this “error”.

By the end of my sophomore year I was nominated to represent Arizona State University at an inaugural event supporting undergraduate women in science. The purpose of the event was to help prepare promising women in physics for graduate school applications, as well as provide information on life as a graduate student. The event, called FUTURE of Physics, was to be held at Caltech.

I mentioned the nomination to Frank Wilczek and he excitedly told me that I must use the opportunity to meet Dr. John Preskill, who was at the forefront of quantum computing and quantum error correction. He reminded me that the best advice he could give anyone was to “find interesting minds and bother them.”

FUTURE 2018 at Caltech, Pasadena, CA

Pasadena

I spent two exciting days at Caltech with 32 other young women from all over the country on November 1st and 2nd of 2018. I was fortunate to meet John Preskill. And of course I introduced myself like any normal human being would, by asking him about the Shor factoring algorithm. I even got to attend a Wednesday group meeting with all of the current faculty and postdocs at IQIM. When I returned to ASU I sent an email to Dr. Preskill inquiring about potentially joining a short research project with his team.

I was extremely relieved when months later I received a response and an invitation to apply for the Summer Undergraduate Research Fellowship (SURF) at Caltech. Because Dr. Preskill’s recent work has been at the forefront of quantum error correction for quantum computing it was relatively straightforward to come up with a research proposal that aligned with the interests of my research adviser at ASU.

One of the major obstacles to efficient and widespread proliferation of quantum computers is the corruption of qubits, expensively held in very delicate low-energy states, by environmental interference and noise. People simply don’t, and should not, have confidence in practical, everyday use of quantum computers without reliable quantum error correction. The proposal was to create a proof that, if you’re starting with five physical qubits (representing a single logical qubit) and lose two of those qubits due to error, you can work backwards to recreate the original five qubits, and recover the lost logical qubit in the context of holographic error correcting codes. My application was accepted, and I made my way to Pasadena at the beginning of this summer.

The temperate climate, mountains and lush neighborhoods were a welcome change, especially with the onslaught of relentless heat that was about to envelope Phoenix.

Even at a campus as small as Caltech I felt like the smallest, most insignificant fish in a tiny, albeit prestigious, pond. But soon I was being connected to many like-minded, heavily motivated mathematicians and physicists, from all walks of life and from every corner of the Earth. Seasoned, young post-docs, like Grant Salton and Victor Albert introduced me to HaPPY tensors. HaPPY tensors are a holographic tensor network model developed by Dr. Preskill and colleagues meant to represent a toy model of AdS/CFT. Under this highly accessible and world-class mentorship, and with essentially unlimited resources, I wrestled with HaPPY tensors all summer and successfully discovered a decoder that could recover five qubits from three.

Example of tensor network causal and entanglement wedge reconstructions. From a blog post by Beni Yoshida on March 27th, 2015 on Quantum Frontiers.

This was the ultimate confidence booster. All the years of doubting myself and my ability, due to educating myself in a vacuum, lacking the critical feedback provided by real mentors, all disappeared.

Tomorrow

Now returning to ASU to finish my undergraduate education, I find myself still thinking about what’s next. I still have plans to expand my proof, extending beyond five qubits, to a continuous variable representation, and writing a general algorithm for an arbitrary N layer tensor-network construction. My mentors at Caltech have graciously extended their support to this ongoing work. And I now dream to become a professor of physics at an elite institution where I can continue to pursue the answers to life’s most confusing problems.

My days left in America are not up to me. I am applying for permanent amnesty so I can continue to pursue my academic dreams, and to take a crack at some of the most difficult problems facing humanity, like accelerating the progress towards quantum computing. I know I can’t pursue those goals back in Afghanistan. At least, not yet. Back there, women like myself are expected to stay at home, prepare food and clean the house for everybody else.

Little do they know how terrible I am at housework – and how much I love math.

Zoe Saldana Answers the Quantum Call

qic-header

Stephen Hawking & Zoe Saldana try to save Simon Pegg’s cat

Watch Quantum Is Calling with Zoe Saldana, Stephen Hawking, Keanu Reeves, Paul Rudd, Simon Pegg, and John Cho. 

We are on the verge of a quantum revolution. Like in the days of the space race, technology has brought an impossibly distant frontier to our doorstep. Just over 17 years ago Michael Crichton wrote a parallel universe-hopping adventure, Timeline, whose fundamental transportation technology required the advent of quantum computing – a concept that was still only theoretical at the time. Today, IBM’s five-quantum bit (or qubit) array is at the fingertips of anyone within reach of the cloud. Google is building a fifty-qubit array. Microsoft is bankrolling a brain trust that will build a quantum computer based on topological qubits. Intel is investing $50 million on spin qubit technology. The UK has announced a £270 million program, and the EU a €1 billion program, to develop quantum technologies. And even more quantum circuits are on the way; the equivalent of competing classes of space shuttles. Only these crafts aren’t meant to travel through space, or even time. They travel through the complete unknown. Qubits fluctuate between the infinite universes of possibility, their quantum states based inherently on uncertainty. And the best way to harness that seemingly unlimited computing power, and take the first steps into the quantum frontier, is through the elusive concept of entanglement.

qubit

So then, the quantum crafts are ready; the standby lights on their consoles blinking in a steady yellow cadence. What we’re missing are the curiosity-driven pilots willing to grapple with the uncertain and unpredictable.

The quantum mechanics property of entanglement was discovered by Albert Einstein, Boris Podolsky, and Nathan Rosen and soon after described in a famous 1935 paper. Einstein called it “spooky action at a distance.” Virtually all of his contemporaries, including Edwin Schrödinger who coined the term “entanglement”, and the entire subsequent generation of physicists would struggle with this paradox. Although their struggles would be necessary to arrive at this particular moment in time, this precipice, their collective and prodigious minds were, and remain to be, handcuffed by training and experiences rooted in a classical understanding of the laws of nature – derived from phenomena that can be seen or felt, either directly or indirectly. Quantum entanglement, on the other hand, presents a puzzle of a fundamentally abstract nature.

rudd-v-hawking

Paul Rudd & Stephen Hawking chatting it up

When Paul Rudd defeated Stephen Hawking in a game of quantum chess – a game built from the ground up with a quantum mechanical set of moves leveraging superposition and entanglement – our intent was to suggest that an entirely new generation of physicists can emerge with an intuitive understanding of entanglement, even before having to dip their toes in mathematics.

Language, Young Lady

Following up on Anyone Can Quantum, the challenges were to (1) further introduce and elaborate on quantum entanglement and (2) reach a wider audience, particularly women. Coming from a writer’s perspective, my primary concern was to make the abstract concept of entanglement somehow relatable. Popular stories, at their most basic, are told through interactions between people in relationships. Only through relational interactions can characters be challenged enough to affect a change in behavior, and as a result support a theme. Early story concepts evolved from the idea that any interaction with entanglement would result in a primary problem of miscommunication. Entanglement, in any form approaching personification, would be fully alien and incomprehensible. Language then, I decided, would become the fabric by which we could create a set of interactions between a human and entanglement.

arrival-movie-4-e1471529984165

Dr. Louise Banks (Amy Adams) & Ian Donnelly (Jeremy Renner) in Arrival

This particular dynamic was tackled in the recent movie Arrival. There, the fictional linguist Dr. Louise Banks is tasked with translating the coffee-ring-stain sign language of a visiting alien civilization before one of the world’s many nervous armies attacks them and causes an intergalactic incident. In the process of decoding the dense script, the controversial Sapir-Whorf theory is brought up introducing the idea that language shapes the way people think. While this theory may or may not hold snow, I am still impressed with the notion that a shared, specific, and descriptive language is necessary to collaborate and innovate. This impression is supported by my own experience in molecular and cell biology research in which communicating new findings always requires expending a tremendous amount of energy crafting a new and appropriate set of terms, or in other words, an expansion of the language.

Marvel To The Rescue

aether_tesseract_groot-0

The Tesseract & Groot in Guardians of the Galaxy

To drive their building, multi-threaded Infinity Stones storyline, the Marvel Cinematic Universe (MCU) has been fortuitously bold in broaching quantum physics concepts and attempting to ground them in real science, taking advantage of the contacts available through the Science & Entertainment Exchange. Through these consultations, movies like Thor and Ant-Man have already delivered to a wide and diverse audience complex concepts such as Einstein-Rosen bridges (wormholes) and the Quantum Realm.

The Ant-Man consultation, in particular, resulted in a relationship between IQIM’s own Spyridon Michalakis (aka Spiros) and Ant-Man himself, Paul Rudd. This relationship was not only responsible for Anyone Can Quantum, but it was also the reason why Spiros was invited to be a panelist at the Silicon Valley Comic Con earlier this year, where he was interviewed by science journalist Zuberoa “Zube” Marcos of the global press outfit, El Pais, a woman who would end up playing a central role in getting Quantum Is Calling off the ground.

So the language of quantum physics was being slowly introduced to a wider, global population thanks to the Marvel films. It occurred to us that we had the opportunity to explain some of the physics concepts brought up by the MCU through the lens of quantum physics, and entanglement in particular. The one element of the MCU storylines that was most attractive to us was the Tesseract and its encased Space Stone. It was the first of the Infinity Stones introduced (in Captain America: The First Avenger) and the one that drove the plot of The Avengers, culminating in the creation of a wormhole over Manhattan. For Spiros, the solution was simple: In order to create wormholes, the exotic matter comprising the Space Stone would likely have to exploit entanglement, as described in a conjecture, dubbed “ER=EPR”, published by Leonard Susskind and Juan Maldacena in 2013.

immunity-syndrome

The USS Enterprise (NCC-1701) in the Star Trek TOS episode “The Immunity Syndrome”

Finding Our Star

The remaining challenge was to find the right actress to deliver the new story. The earliest version of our story (back in June, 2016) was based on the crew of the Starship Enterprise encountering an alien creature that was the embodiment of entanglement (a.k.a The Flying Spaghetti Monster), a creature that attempted communication with Earthlings by reciting sound bytes originating from past Earth radio transmissions. In this story iteration, Chief communications officer Uhura would have used her skills to translate the monster’s message amidst rising tension (just like in Arrival).

zoe-saldana-as-lieutenant-uhura-2

Zoe Saldana as Lt. Nyota Uhura

In the subsequent revisions to the story we had to simplify the script and winnow down the cast. We opted to lean on Zoe Saldana’s Uhura. Her character could take on the role of captain, communications officer, and engineer. Zoe was already widely known across multiple sci-fi franchises featuring aliens (namely Star Trek, Guardians of the Galaxy, and Avatar) and her characters have had to speak in or translate those languages.

Zoe = Script

But before approaching Zoe Saldana – and at that point in time, we had no idea how to go about that – we needed to complete a script. Two other incredible resources were available to us: the voices of Dr. Hawking and Keanu Reeves; and we had to make all three work together in a unique comedy – one that did not squander the involvement of either voice, but also served to elevate the role of Zoe.

Even in the first version of the story it was my intent to have Keanu Reeves provide the voice for entanglement, expressed through the most alien sounding languages I could imagine. To compress the story to fit our budget we were forced to narrow the list of languages to two, and I chose Dothraki and Navajo. The role of Keanu’s character was to test, recruit, and ultimately invite Zoe Saldana to enter and experience entanglement in the Quantum Realm. Dr. Stephen Hawking would be the reluctant guide that helps Zoe interpret the confusing clues embedded within the Dothraki and Navajo to arrive at the ER=EPR conjecture.

As for the riddle itself, I chose to use two poems from Through the Looking Glass (and What Alice Found There), The Walrus and The Carpenter as well as Haddock’s Eyes, as the reference material, so that those savvy enough to solve even half the riddle on their own would have a further clue pointing them to the final answer.

vlcsnap-2016-12-15-15h15m50s527

Simon Pegg’s cat, Schrodinger (not his actual cat)

The disappearance of Simon’s cat, Schrödinger, had a tripartite function of (a) presenting an inciting incident that urged Zoe to subject herself to the puzzle-solving trial, which we called the Riddle of the Tesseract, (b) to demonstrate the risk of touching the Tesseract and the gravity of her climactic choice, and (c) invoking Schrödinger’s famous thought experiment to present the idea that, in the Quantum Realm, the cat and Zoe are both dead and alive, an uncertainty.

The story was done. And it looked good on paper. But the script was just a piece of paper unless we got Zoe Saldana to sign on.

zube

Zuberoa Marcos

Zoe = Zube

For weeks, Spiros worked all of his connections only to come up empty. It wasn’t until he mentioned our holy quest to Zube (from El Pais and Silicon Valley Comic Con) during an unrelated Skype session that he had the first glimmer of hope, even kismet. Zube had been working on arranging an interview with Zoe for months, an interview that would be taking place three days later in Atlanta. Without even a second thought, Spiros purchased a plane ticket and was on his way to Atlanta two days later. Watching the interview take place, he heard Zoe answer one of Zube’s question about what kind of technology interested her the most. It was the transporter, the teleportation machine used by the crew of the Enterprise to shift matter to and from surfaces of alien planets. This was precisely the kind of technology we were interested in describing at a quantum level! Realizing this was the opening we needed, Zube nodded over to Spiros and made the introductions.

It turns out Zoe had been fascinated by science fiction since her early childhood, being particularly obsessed with Frank Herbert’s Dune. Moreover, she was interested in playing the role of our lead character. In the weeks that followed, communication proceeded through managers in an attempt to nail down a filming date.

vlcsnap-2016-12-15-15h17m09s244

Mariel, Zoe, and Cicely Saldana

The Dangers of Miscommunication

I probably don’t need to remind you that Zoe Saldana is a core component of three gigantic franchises. That means tight schedules, press conferences, and international travel. Ultimately Zoe said that her travel commitments wouldn’t allow her to film our short. It was back to square one. We were dead in the water. The script was just a piece of paper.

However, for some reason, Spiros and Zube were not willing to concede. Zube found out about Zoe Saldana’s production company Cinestar and got in contact with coordinator Diego Gonzalez, to set up a lunch meeting. At lunch, Diego informed Zube and Spiros that Zoe really wanted to do this, but her team was under the impression that filming for our short video had to take place the week Star Trek: Beyond was to be released (Zoe was arguably busier than the POTUS during that week). Spiros informed Cinestar that we would accommodate whatever date Zoe could be available. Having that hurdle removed paved the way for a concrete film date to be set, October 25th. And now the real work began.

shaun_of_the_dead_0386

Simon Pegg in Shaun of the Dead

Finding Common Language

We had set the story inside Simon Pegg’s house and the script included voice-over dialogue for the superstar, but we had yet to even contact Simon. We had written in a part with Paul Rudd on a voicemail message. And we had also included a sixth character that would knock on the door and force Zoe to make her big decision. On top of that I had incorporated Dothraki and Navajo versions of century-old poems that had yet to be translated into those two languages. While Spiros worked on chasing down the talent, I nervously attempted to make contact with experts in the two languages.

david-peterson-dothraki

David J. Peterson

I remember watching a video of Prof. David J. Peterson, creator of the Dothraki language for HBO’s Game of Thrones, speaking at Google about the process of crafting the language. Some unknown courage surfaced and I hunted down contact information for the famous linguist. I found an old website of his, an email address, and sent and inquiry at about midnight pacific standard time on October 14th, the day before my birthday. Within 45 minutes David had responded with interest in helping out. I was floored. And I couldn’t help geeking out. But more importantly this meant we would have the most accurate translation humanly possible. And when one is working on behalf of Caltech you definitely feel the pressure to be above reproach, or unsullied ;).

wheeler-and-keanu

Keanu Reeves, Jennifer Wheeler, a pumpkin, a highlighter & my left arm

Finding a Navajo translator was comparatively difficult. A couple days after receiving Dr. Peterson’s email, I was in Scottsdale, AZ with my brother. I had previously scheduled the trip so that I could be in attendance at a book-signing featuring two of my favorite authors, as a birthday gift to myself. The event was held at the Poisoned Pen bookstore where many other local authors would regularly hold book-signings. While I was geeking out over meeting my favorite writing duo, as well as over my recent interaction with David Peterson, I was also stressed by the pressure to come through on an authentic Navajo translation. My brother urged me to ask the proprietors of the Poisoned Pen for any leads. And wouldn’t you know it, they had recently hosted a book-signing for the author of a Code Talkers book, and she was local. A morning of emails led to Jennifer Wheeler. We had struck gold. Jennifer had recently overseen Navajo translations of Star Wars: A New Hope and Finding Nemo, complete with voice-overs. There was probably nobody more qualified in the world.

keanu-befuddled

Keanu Reeves as Ted “Theodore” Logan in Bill & Ted’s Excellent Adventure

So it turns out that Navajo is a much more difficult language to translate and speak than I had anticipated. For instance, there are over a hundred vowel sounds. So even though the translation was in good hands, I would be imposing on Keanu Reeves one of the greatest vocal challenges he would ever undertake. Eventually I arranged to have Jennifer on hand during Keanu’s voice recording. Here’s what he had to record (phonetically):

Tsee /da / a / ko / ho / di / say / tsaa, / a / nee / di

aɫ / tso / n’ / shay / ch’aa / go

Echo Papa Romeo / do / do / chxih / da

Bi / nee / yay / bi / zhay / ho / lo / nee / bay / do / bish / go.

vlcsnap-2016-12-15-15h24m29s618

Alex Winter & Zoe Saldana hard at work

Filming Day

After months of planning and weeks of script revisions, filming finally happened at an opulent, palatial residence in the Hollywood Hills (big props to Shaun Maguire and Liana Kadisha for securing the location). Six cats. Three trainers. Lights. Cameras. Zube. Zoe Saldana actually showed up! Along with her sisters, Cinestar, and even John Cho! Spiros had gotten assurances from Simon Pegg that he would lend his name and golden voice so we were able to use the ridiculous “Simon’s Peggs” wood sign that we had crafted just for the shoot. Within a few busy hours we were wrapped. All the cats and props were packed and back in LA traffic, where we all seem to exist more often than not. Now the story was left to the fate of editing and post-production.

 

In Post

Unlike the circumstances involved with Anyone Can Quantum, for which there was a fast approaching debut date, Spiros and myself actually had time to be an active part of the post-production process. Alex Winter, Trouper Productions, and STITCH graciously involved us through virtually every step.

One thing that became quite apparent through the edits was the lack of a strong conclusion. Zoe’s story was designed to be somewhat open-ended. Although her character arc was meant to reach a conclusion with the decision to enter the Quantum Realm, it was clear that the short still needed a clear resolution.

matrix-seraphim

What Seraph looks like as code in the Matrix Reloaded

Through much debate and workshopping, Spiros and I finally arrived at bookend scenes that took advantage of Keanu Reeve’s emblematic representation of, and inescapable entanglement with, The Matrix. Our ultimate goal is to create stories that reflect the quantum nature of the universe, the underlying quantum code that is the fabric from which all things emerge, exist, and interact. So, in a way, The Matrix wasn’t that far off.

Language Is Fluid

LIQUi|> (“liquid”), or Language-Integrated Quantum Operations, is an architecture, programming language, and tools suite designed for quantum computing that is being developed by the Microsoft team at Quantum Architectures and Computation Group (or QuArC). Admittedly taking a few liberties, on Spiros’s advice I used actual LIQUi|> commands to create a short script that established a gate (or data structure) that I called Alice (which is meant to represent Zoe and her location), created an entanglement between Alice and the Tesseract, then teleported the Tesseract to Alice. You’ll notice that the visual and sound effects are ripped right from The Matrix.

This set up the possibility of adapting Neo’s famous monologue (from the end of the original Matrix) so we could hint that Zoe was somewhere adrift within the quantum code that defines the Quantum Realm. Yes, both Spiros and I were in the studio when Keanu recorded those lines (along with his lines in Dothraki and Navajo). Have I mentioned geeking out yet? An accompanying sequence of matrix code, or digital rain, had to be constructed that could accommodate examples of entanglement-related formulas. As you might have guessed, the equations highlighted in the digital rain at the end of the short are real, most of which came from this paper on emergent space (of which Spiros is a co-author).

keanu-and-keanu

Keanu Reeves & Keanu

Listen To Your Friend Keanu Reeves. He’s A Cool Dude.

With only a few days left before our debut date, Simon Pegg, Stephen Hawking and Paul Rudd all came through with their voice-over samples. Everything was then stitched together and the color correction, sound balancing, and visual effects were baked into the final video and phew. Finally, and impossibly, through the collaboration of a small army of unique individuals, the script had become a short movie. And hopefully it has become something unique, funny, and inspiring, especially to any young women (and men) who may be harboring an interest in, or a doubt preventing them from, delving into the quantum realm.