Time capsule at the Dibner Library

The first time I met Lilla Vekerdy, she was holding a book.

“What’s that?” I asked.

“A second edition of Galileo’s Siderius nuncius. Here,” she added, thrusting the book into my hands. “Take it.”

So began my internship at the Smithsonian Institution’s Dibner Library for the History of Science and Technology.

Many people know the Smithsonian for its museums. The Smithsonian, they know, houses the ruby slippers worn by Dorothy in The Wizard of Oz. The Smithsonian houses planes constructed by Orville and Wilbur Wright, the dresses worn by First Ladies on presidential inauguration evenings, a space shuttle, and a Tyrannosaurus Rex skeleton. Smithsonian museums line the National Mall in Washington, D.C.—the United States’ front lawn—and march beyond.

Most people don’t know that the Smithsonian has 21 libraries.

Lilla heads the Smithsonian Libraries’ Special-Collections Department. She also directs a library tucked into a corner of the National Museum of American History. I interned at that library—the Dibner—in college. Images of Benjamin Franklin, of inventor Eli Whitney, and of astronomical instruments line the walls. The reading room contains styrofoam cushions on which scholars lay crumbling rare books. Lilla and the library’s technician, Morgan Aronson, find references for researchers, curate exhibitions, and introduce students to science history. They also care for the vault.

The vault. How I’d missed the vault.


A corner of the Dibner’s reading room and part of the vault

The vault contains manuscripts and books from the past ten centuries. We handle the items without gloves, which reduce our fingers’ sensitivities: Interpose gloves between yourself and a book, and you’ll raise your likelihood of ripping a page. A temperature of 65°F inhibits mold from growing. Redrot mars some leather bindings, though, and many crowns—tops of books’ spines—have collapsed. Aging carries hazards.

But what the ages have carried to the Dibner! We1 have a survey filled out by Einstein and a first edition of Newton’s Principia mathematica. We have Euclid’s Geometry in Latin, Arabic, and English, from between 1482 and 1847. We have a note, handwritten by quantum physicist Erwin Schödinger, about why students shouldn’t fear exams.

I returned to the Dibner one day this spring. Lilla and I fetched out manuscripts and books related to quantum physics and thermodynamics. “Hermann Weyl” labeled one folder.

Weyl contributed to physics and mathematics during the early 1900s. I first encountered his name when studying particle physics. The Dibner, we discovered, owns a proof for part of his 1928 book Gruppentheorie und Quantenmechanik. Weyl appears to have corrected a typed proof by hand. He’d handwritten also spin matrices.

Electrons have a property called “spin.” Spin resembles a property of yours, your position relative to the Earth’s center. We represent your position with three numbers: your latitude, your longitude, and your distance above the Earth’s surface. We represent electron spin with three blocks of numbers, three 2 \times 2 matrices. Today’s physicists write the matrices as2

S_x  = \begin{bmatrix}  0  &  1  \\  1  &  0  \end{bmatrix}  \, , \quad  S_y  = \begin{bmatrix}  0  &  -i  \\  i  &  0  \end{bmatrix}  \, , \quad \text{and} \quad  S_z  = \begin{bmatrix}  -1  &  0  \\  0  &  1  \end{bmatrix} \, .

We needn’t write these matrices. We could represent electron spin with different 2 \times 2 matrices, so long as the matrices obey certain properties. But most physicists choose the above matrices, in my experience. We call our choice “a convention.”

Weyl chose a different convention:

S_x  = \begin{bmatrix}  1  &  0  \\  0  &  -1  \end{bmatrix}  \, , \quad  S_y  = \begin{bmatrix}  0  &  1  \\  1  &  0  \end{bmatrix}  \, , \quad \text{and} \quad  S_z  = \begin{bmatrix}  0  &  i  \\  -i  &  0  \end{bmatrix} \, .

The difference surprised me. Perhaps it shouldn’t have: Conventions change. Approaches to quantum physics change. Weyl’s matrices differ from ours little: Permute our matrices and negate one matrix, and you recover Weyl’s.

But the electron-spin matrices play a role, in quantum physics, like the role played by T. Rex in paleontology exhibits: All quantum scientists recognize electron spin. We illustrate with electron spin in examples. Students memorize spin matrices in undergrad classes. Homework problems feature electron spin. Physicists have known of electron spin’s importance for decades. I didn’t expect such a bedrock to have changed its trappings.

How did scientists’ convention change? When did it? Why? Or did the convention not change—did Weyl’s contemporaries use today’s convention, and did Weyl stand out?

Weyl 2

A partially typed, partially handwritten, proof of a book by Hermann Weyl.

I intended to end this article with these questions. I sent a draft to John Preskill, proposing to post soon. But he took up the questions like a knight taking up arms.

Wolfgang Pauli, John emailed, appears to have written the matrices first. (Physicist call the matrices “Pauli matrices.”) A 1927 paper by Pauli contains the notation used today. Paul Dirac copied the notation in a 1928 paper, acknowledging Pauli. Weyl’s book appeared the same year. The following year, Weyl used Pauli’s notation in a paper.

No document we know of, apart from the Dibner proof, contains the Dibner-proof notation. Did the notation change between the proof-writing and publication? Does the Dibner hold the only anomalous electron-spin matrices? What accounts for the anomaly?

If you know, feel free to share. If you visit DC, drop Lilla and Morgan a line. Bring a research project. Bring a class. Bring zeal for the past. You might find yourself holding a time capsule by Galileo.

Lilla and me

Dibner librarian Lilla Vekerdy and a former intern

With thanks to Lilla and Morgan for their hospitality, time, curiosity, and expertise. With thanks to John for burrowing into the Pauli matrices’ history.

1I continue to count myself as part of the Dibner community. Part of me refuses to leave.

2I’ll omit factors of \hbar / 2 \, .

The power of information

Sara Imari Walker studies ants. Her entomologist colleague Gabriele Valentini cultivates ant swarms. Gabriele coaxes a swarm from its nest, hides the nest, and offers two alternative nests. Gabriele observe the ants’ responses, then analyzes their data with Sara.

Sara doesn’t usually study ants. She trained in physics, information theory, and astrobiology. (Astrobiology is the study of life; life’s origins; and conditions amenable to life, on Earth and anywhere else life may exist.) Sara analyzes how information reaches, propagates through, and manifests in the swarm.

Some ants inspect one nest; some, the other. Few ants encounter both choices. Yet most of the ants choose simultaneously. (How does Gabriele know when an ant chooses? Decided ants carry other ants toward the chosen nest. Undecided ants don’t.)

Gabriele and Sara plotted each ant’s status (decided or undecided) at each instant. All the ants’ lines start in the “undecided” region, high up in the graph. Most lines drop to the “decided” region together. Physicists call such dramatic, large-scale changes in many-particle systems “phase transitions.” The swarm transitions from the “undecided” phase to the “decided,” as moisture transitions from vapor to downpour.

Sara presentation

Sara versus the ants

Look from afar, and you’ll see evidence of a hive mind: The lines clump and slump together. Look more closely, and you’ll find lags between ants’ decisions. Gabriele and Sara grouped the ants according to their behaviors. Sara explained the grouping at a workshop this spring.

The green lines, she said, are undecided ants.

My stomach dropped like Gabriele and Sara’s ant lines.

People call data “cold” and “hard.” Critics lambast scientists for not appealing to emotions. Politicians weave anecdotes into their numbers, to convince audiences to care.

But when Sara spoke, I looked at her green lines and thought, “That’s me.”

I’ve blogged about my indecisiveness. Postdoc Ning Bao and I formulated a quantum voting scheme in which voters can superpose—form quantum combinations of—options. Usually, when John Preskill polls our research group, I abstain from voting. Politics, and questions like “Does building a quantum computer require only engineering or also science?”,1 have many facets. I want to view such questions from many angles, to pace around the questions as around a sculpture, to hear other onlookers, to test my impressions on them, and to cogitate before choosing.2 However many perspectives I’ve gathered, I’m missing others worth seeing. I commiserated with the green-line ants.


I first met Sara in the building behind the statue. Sara earned her PhD in Dartmouth College’s physics department, with Professor Marcelo Gleiser.

Sara presented about ants at a workshop hosted by the Beyond Center for Fundamental Concepts in Science at Arizona State University (ASU). The organizers, Paul Davies of Beyond and Andrew Briggs of Oxford, entitled the workshop “The Power of Information.” Participants represented information theory, thermodynamics and statistical mechanics, biology, and philosophy.

Paul and Andrew posed questions to guide us: What status does information have? Is information “a real thing” “out there in the world”? Or is information only a mental construct? What roles can information play in causation?

We paced around these questions as around a Chinese viewing stone. We sat on a bench in front of those questions, stared, debated, and cogitated. We taught each other about ants, artificial atoms, nanoscale machines, and models for information processing.


Chinese viewing stone in Yuyuan Garden in Shanghai

I wonder if I’ll acquire opinions about Paul and Andrew’s questions. Maybe I’ll meander from “undecided” to “decided” over a career. Maybe I’ll phase-transition like Sara’s ants. Maybe I’ll remain near the top of her diagram, a green holdout.

I know little about information’s power. But Sara’s plot revealed one power of information: Information can move us—from homeless to belonging, from ambivalent to decided, from a plot’s top to its bottom, from passive listener to finding yourself in a green curve.


With thanks to Sara Imari Walker, Paul Davies, Andrew Briggs, Katherine Smith, and the Beyond Center for their hospitality and thoughts.


1By “only engineering,” I mean not “merely engineering” pejoratively, but “engineering and no other discipline.”

2I feel compelled to perform these activities before choosing. I try to. Psychological experiments, however, suggest that I might decide before realizing that I’ve decided.

Modern Physics Education?

Being the physics department executive officer (on top of being a quantum physicist) makes me think a lot about our physics college program. It is exciting. We start with mechanics, and then go to electromagnetism (E&M) and relativity, then to quantum and statistical mechanics, and then to advanced mathematical methods, analytical mechanics and more E&M. The dessert is usually field theory, astrophysics and advanced lab. You can take some advanced courses, introducing condensed matter, quantum computation, particle theory, AMO, general relativity, nuclear physics, etc. By the time we are done with college, we definitely feel like we know a lot.

But in the end of all that, what do we know about modern physics? Certainly we all took a class called ‘modern physics’. Or should I say ‘”modern” physics’? Because, I’m guessing, the modern physics class heavily featured the Stern-Gerlach experiment (1922) and mentions of De-Broglie, Bohr, and Dirac quite often. Don’t get me wrong: great physics, and essential. But modern?

So what would be modern physics? What should we teach that does not predate 1960? By far the biggest development in my neck of the woods is easy access to computing power. Even I can run simulations for a Schroedinger equation (SE) with hundreds of sites and constantly driven. Even I can diagonalize a gigantic matrix that corresponds to a Mott-Hubbard model of 15 or maybe even 20 particles. What’s more, new approximate algorithms capture the many-body quantum dynamics, and ground states of chains with 100s of sites. These are the DMRG (density matrix renormalization group) and MPS (matrix product states) (see https://arxiv.org/abs/cond-mat/0409292 for a review of DMRG, and https://arxiv.org/pdf/1008.3477.pdf for a review of MPS, both by the inspiring Uli Schollwoeck).

Should we teach that? Isn’t it complicated? Yes and no. Respectively – not simultaneously. We should absolutely teach it. And no – it is really not complicated. That’s the point – it is simpler than Schroedinger’s equation! How do we teach it? I am not sure yet, but certainly there is a junior level time slot for computational quantum mechanics somewhere.

What else? Once we think about it, the flood gates open. Condensed matter just gave us a whole new paradigm for semi-conductors: topological insulators. Definitely need to teach that – and it is pure 21st century! Tough? Not at all, just solving SE on a lattice. Not tough? Well, maybe not trivial, but is it any tougher than finding the orbitals of Hydrogen? (at the risk of giving you nightmares, remember Laguerre polynomials? Oh – right – you won’t get any nightmares, because, most likely, you don’t remember!)

With that let me take a shot at the standard way that quantum mechanics is taught. Roughly a quantum class goes like this: wave-matter duality; SE; free particle; box; harmonic oscillator, spin, angular momentum, hydrogen atom. This is a good program for atomic physics, and possibly field theory. But by and large, this is the quantum mechanics of vacuum. What about quantum mechanics of matter? Is Feynman path integral really more important than electron waves in solids? All physics is beautiful. But can’t Feynman wait while we teach tight binding models?

And I’ll stop here, before I get started on hand-on labs, as well as the fragmented nature of our programs.

Question to you all out there: Suppose we go and modernize (no quotes) our physics program. What should we add? What should we take away? And we all agree – all physics is Beautiful! I’m sure I have my blind spots, so please comment!

Glass beads and weak-measurement schemes

Richard Feynman fiddled with electronics in a home laboratory, growing up. I fiddled with arts and crafts.1 I glued popsicle sticks, painted plaques, braided yarn, and designed greeting cards. Of the supplies in my family’s crafts box, I adored the beads most. Of the beads, I favored the glass ones.

I would pour them on the carpet, some weekend afternoons. I’d inherited a hodgepodge: The beads’ sizes, colors, shapes, trimmings, and craftsmanship varied. No property divided the beads into families whose members looked like they belonged together. But divide the beads I tried. I might classify them by color, then subdivide classes by shape. The color and shape groupings precluded me from grouping by size. But, by loosening my original classification and combining members from two classes, I might incorporate trimmings into the categorization. I’d push my classification scheme as far as I could. Then, I’d rake the beads together and reorganize them according to different principles.

Why have I pursued theoretical physics? many people ask. I have many answers. They include “Because I adored organizing craft supplies at age eight.” I craft and organize ideas.


I’ve blogged about the out-of-time-ordered correlator (OTOC), a signature of how quantum information spreads throughout a many-particle system. Experimentalists want to measure the OTOC, to learn how information spreads. But measuring the OTOC requires tight control over many quantum particles.

I proposed a scheme for measuring the OTOC, with help from Chapman University physicist Justin Dressel. The scheme involves weak measurements. Weak measurements barely disturb the systems measured. (Most measurements of quantum systems disturb the measured systems. So intuited Werner Heisenberg when formulating his uncertainty principle.)

I had little hope for the weak-measurement scheme’s practicality. Consider the stereotypical experimentalist’s response to a stereotypical experimental proposal by a theorist: Oh, sure, we can implement that—in thirty years. Maybe. If the pace of technological development doubles. I expected to file the weak-measurement proposal in the “unfeasible” category.

But experimentalists started collaring me. The scheme sounds reasonable, they said. How many trials would one have to perform? Did the proposal require ancillas, helper systems used to control the measured system? Must each ancilla influence the whole measured system, or could an ancilla interact with just one particle? How did this proposal compare with alternatives?

I met with a cavity-QED2 experimentalist and a cold-atoms expert. I talked with postdocs over skype, with heads of labs at Caltech, with grad students in Taiwan, and with John Preskill in his office. I questioned an NMR3 experimentalist over lunch and fielded superconducting-qubit4 questions in the sunshine. I read papers, reread papers, and powwowed with Justin.

I wouldn’t have managed half so well without Justin and without Brian Swingle. Brian and coauthors proposed the first OTOC-measurement scheme. He reached out after finding my first OTOC paper.

According to that paper, the OTOC is a moment of a quasiprobability.5 How does that quasiprobability look, we wondered? How does it behave? What properties does it have? Our answers appear in a paper we released with Justin this month. We calculate the quasiprobability in two examples, prove properties of the quasiprobability, and argue that the OTOC motivates generalizations of quasiprobability theory. We also enhance the weak-measurement scheme and analyze it.

Amidst that analysis, in a 10 x 6 table, we classify glass beads.


We inventoried our experimental conversations and distilled them. We culled measurement-scheme features analogous to bead size, color, and shape. Each property labels a row in the table. Each measurement scheme labels a column. Each scheme has, I learned, gold flecks and dents, hues and mottling, an angle at which it catches the light.

I’ve kept most of the glass beads that fascinated me at age eight. Some of the beads have dispersed to necklaces, picture frames, and eyeglass leashes. I moved the remnants, a few years ago, to a compartmentalized box. Doesn’t it resemble the table?


That’s why I work at the IQIM.


1I fiddled in a home laboratory, too, in a garage. But I lived across the street from that garage. I lived two rooms from an arts-and-crafts box.

2Cavity QED consists of light interacting with atoms in a box.

3Lots of nuclei manipulated with magnetic fields. “NMR” stands for “nuclear magnetic resonance.” MRI machines, used to scan brains, rely on NMR.

4Superconducting circuits are tiny, cold quantum circuits.

5A quasiprobability resembles a probability but behaves more oddly: Probabilities range between zero and one; quasiprobabilities can dip below zero. Think of a moment as like an average.

With thanks to all who questioned me; to all who answered questions of mine; to my wonderful coauthors; and to my parents, who stocked the crafts box.

Local operations and Chinese communications

The workshop spotlighted entanglement. It began in Shanghai, paused as participants hopped the Taiwan Strait, and resumed in Taipei. We discussed quantum operations and chaos, thermodynamics and field theory.1 I planned to return from Taipei to Shanghai to Los Angeles.

Quantum thermodynamicist Nelly Ng and I drove to the Taipei airport early. News from Air China curtailed our self-congratulations: China’s military was running an operation near Shanghai. Commercial planes couldn’t land. I’d miss my flight to LA.


Two quantum thermodynamicists in Shanghai

An operation?

Quantum information theorists use a mindset called operationalism. We envision experimentalists in separate labs. Call the experimentalists Alice, Bob, and Eve (ABE). We tell stories about ABE to formulate and analyze problems. Which quantum states do ABE prepare? How do ABE evolve, or manipulate, the states? Which measurements do ABE perform? Do they communicate about the measurements’ outcomes?

Operationalism concretizes ideas. The outlook checks us from drifting into philosophy and into abstractions difficult to apply physics tools to.2 Operationalism infuses our language, our framing of problems, and our mathematical proofs.

Experimentalists can perform some operations more easily than others. Suppose that Alice controls the magnets, lasers, and photodetectors in her lab; Bob controls the equipment in his; and Eve controls the equipment in hers. Each experimentalist can perform local operations (LO). Suppose that Alice, Bob, and Eve can talk on the phone and send emails. They exchange classical communications (CC).

You can’t generate entanglement using LOCC. Entanglement consists of strong correlations that quantum systems can share and that classical systems can’t. A quantum system in Alice’s lab can hold more information about a quantum system of Bob’s than any classical system could. We must create and control entanglement to operate quantum computers. Creating and controlling entanglement poses challenges. Hence quantum information scientists often model easy-to-perform operations with LOCC.

Suppose that some experimentalist Charlie loans entangled quantum systems to Alice, Bob, and Eve. How efficiently can ABE compute some quantity, exchange quantum messages, or perform other information-processing tasks, using that entanglement? Such questions underlie quantum information theory.


Taipei’s night market. Or Caltech’s neighborhood?

Local operations.

Nelly and I performed those, trying to finagle me to LA. I inquired at Air China’s check-in desk in English. Nelly inquired in Mandarin. An employee smiled sadly at each of us.

We branched out into classical communications. I called Expedia (“No, I do not want to fly to Manila”), United Airlines (“No flights for two days?”), my credit-card company, Air China’s American reservations office, Air China’s Chinese reservations office, and Air China’s Taipei reservations office. I called AT&T to ascertain why I couldn’t reach Air China (“Yes, please connect me to the airline. Could you tell me the number first? I’ll need to dial it after you connect me and the call is then dropped”).

As I called, Nelly emailed. She alerted Bob, aka Janet (Ling-Yan) Hung, who hosted half the workshop at Fudan University in Shanghai. Nelly emailed Eve, aka Feng-Li Lin, who hosted half the workshop at National Taiwan University in Taipei. Janet twiddled the magnets in her lab (investigated travel funding), and Feng-Li cooled a refrigerator in his.

ABE can process information only so efficiently, using LOCC. The time crept from 1:00 PM to 3:30.


Nelly Ng uses classical communications.

What could we have accomplished with quantum communication? Using LOCC, Alice can manipulate quantum states (like an electron’s orientation) in her lab. She can send nonquantum messages (like “My flight is delayed”) to Bob. She can’t send quantum information (like an electron’s orientation).

Alice and Bob can ape quantum communication, given entanglement. Suppose that Charlie strongly correlates two electrons. Suppose that Charlie gives Alice one electron and gives Bob the other. Alice can send one qubit–one unit of quantum information–to Bob. We call that sending quantum teleportation.

Suppose that air-traffic control had loaned entanglement to Janet, Feng-Li, and me. Could we have finagled me to LA quickly?

Quantum teleportation differs from human teleportation.



We didn’t need teleportation. Feng-Li arranged for me to visit Taiwan’s National Center for Theoretical Sciences (NCTS) for two days. Air China agreed to return me to Shanghai afterward. United would fly me to LA, thanks to help from Janet. Nelly rescued my luggage from leaving on the wrong flight.

Would I rather have teleported? I would have avoided a bushel of stress. But I wouldn’t have learned from Janet about Chinese science funding, wouldn’t have heard Feng-Li’s views about gravitational waves, wouldn’t have glimpsed Taiwanese countryside flitting past the train we rode to the NCTS.

According to some metrics, classical resources outperform quantum.


At Taiwan’s National Center for Theoretical Sciences

The workshop organizers have generously released videos of the lectures. My lecture about quantum chaos and fluctuation relations appears here and here. More talks appear here.

With gratitude to Janet Hung, Feng-Li Lin, and Nelly Ng; to Fudan University, National Taiwan University, and Taiwan’s National Center for Theoretical Sciences for their hospitality; and to Xiao Yu for administrative support.

Glossary and other clarifications:

1Field theory describes subatomic particles and light.

2Physics and philosophy enrich each other. But I haven’t trained in philosophy. I benefit from differentiating physics problems that I’ve equipped to solve from philosophy problems that I haven’t.


My brother and I played the video game Sonic the Hedgehog on a Sega Dreamcast. The hero has spiky electric-blue fur and can run at the speed of sound.1 One of us, then the other, would battle monsters. Monster number one oozes onto a dark city street as an aquamarine puddle. The puddle spreads, then surges upward to form limbs and claws.2 The limbs splatter when Sonic attacks: Aqua globs rain onto the street.


The monster’s master, Dr. Eggman, has ginger mustachios and a body redolent of his name. He scoffs as the heroes congratulate themselves.

“Fools!” he cries, the pauses in his speech heightening the drama. “[That monster is] CHAOS…the GOD…of DE-STRUC-TION!” His cackle could put a Disney villain to shame.

Dr. Eggman’s outburst comes to mind when anyone asks what topic I’m working on.

“Chaos! And the flow of time, quantum theory, and the loss of information.”


Alexei Kitaev, a Caltech physicist, hooked me on chaos. I TAed his spring-2016 course. The registrar calls the course Ph 219c: Quantum Computation. I call the course Topics that Interest Alexei Kitaev.

“What do you plan to cover?” I asked at the end of winter term.

Topological quantum computation, Alexei replied. How you simulate Hamiltonians with quantum circuits. Or maybe…well, he was thinking of discussing black holes, information, and chaos.

If I’d had a tail, it would have wagged.

“What would you say about black holes?” I asked.


Sonic’s best friend, Tails the fox.

I fwumped down on the couch in Alexei’s office, and Alexei walked to his whiteboard. Scientists first noticed chaos in classical systems. Consider a double pendulum—a pendulum that hangs from the bottom of a pendulum that hangs from, say, a clock face. Imagine pulling the bottom pendulum far to one side, then releasing. The double pendulum will swing, bend, and loop-the-loop like a trapeze artist. Imagine freezing the trapeze artist after an amount t of time.

What if you pulled another double pendulum a hair’s breadth less far? You could let the pendulum swing, wait for a time t, and freeze this pendulum. This pendulum would probably lie far from its brother. This pendulum would probably have been moving with a different speed than its brother, in a different direction, just before the freeze. The double pendulum’s motion changes loads if the initial conditions change slightly. This sensitivity to initial conditions characterizes classical chaos.

A mathematical object F(t) reflects quantum systems’ sensitivities to initial conditions. [Experts: F(t) can evolve as an exponential governed by a Lyapunov-type exponent: \sim 1 - ({\rm const.})e^{\lambda_{\rm L} t}.] F(t) encodes a hypothetical process that snakes back and forth through time. This snaking earned F(t) the name “the out-of-time-ordered correlator” (OTOC). The snaking prevents experimentalists from measuring quantum systems’ OTOCs easily. But experimentalists are trying, because F(t) reveals how quantum information spreads via entanglement. Such entanglement distinguishes black holes, cold atoms, and specially prepared light from everyday, classical systems.

Alexei illustrated, on his whiteboard, the sensitivity to initial conditions.

“In case you’re taking votes about what to cover this spring,” I said, “I vote for chaos.”

We covered chaos. A guest attended one lecture: Beni Yoshida, a former IQIM postdoc. Beni and colleagues had devised quantum error-correcting codes for black holes.3 Beni’s foray into black-hole physics had led him to F(t). He’d written an OTOC paper that Alexei presented about. Beni presented about a follow-up paper. If I’d had another tail, it would have wagged.


Sonic’s friend has two tails.

Alexei’s course ended. My research shifted to many-body localization (MBL), a quantum phenomenon that stymies the spread of information. OTOC talk burbled beyond my office door.

At the end of the summer, IQIM postdoc Yichen Huang posted on Facebook, “In the past week, five papers (one of which is ours) appeared . . . studying out-of-time-ordered correlators in many-body localized systems.”

I looked down at the MBL calculation I was performing. I looked at my computer screen. I set down my pencil.


I marched to John Preskill’s office.


The bosses. Of different sorts, of course.

The OTOC kept flaring on my radar, I reported. Maybe the time had come for me to try contributing to the discussion. What might I contribute? What would be interesting?

We kicked around ideas.

“Well,” John ventured, “you’re interested in fluctuation relations, right?”

Something clicked like the “power” button on a video-game console.

Fluctuation relations are equations derived in nonequilibrium statistical mechanics. They describe systems driven far from equilibrium, like a DNA strand whose ends you’ve yanked apart. Experimentalists use fluctuation theorems to infer a difficult-to-measure quantity, a difference \Delta F between free energies. Fluctuation relations imply the Second Law of Thermodynamics. The Second Law relates to the flow of time and the loss of information.

Time…loss of information…Fluctuation relations smelled like the OTOC. The two had to join together.


I spent the next four days sitting, writing, obsessed. I’d read a paper, three years earlier, that casts a fluctuation relation in terms of a correlator. I unearthed the paper and redid the proof. Could I deform the proof until the paper’s correlator became the out-of-time-ordered correlator?

Apparently. I presented my argument to my research group. John encouraged me to clarify a point: I’d defined a mathematical object A, a probability amplitude. Did A have physical significance? Could anyone measure it? I consulted measurement experts. One identified A as a quasiprobability, a quantum generalization of a probability, used to model light in quantum optics. With the experts’ assistance, I devised two schemes for measuring the quasiprobability.

The result is a fluctuation-like relation that contains the OTOC. The OTOC, the theorem reveals, is a combination of quasiprobabilities. Experimentalists can measure quasiprobabilities with weak measurements, gentle probings that barely disturb the probed system. The theorem suggests two experimental protocols for inferring the difficult-to-measure OTOC, just as fluctuation relations suggest protocols for inferring the difficult-to-measure \Delta F. Just as fluctuation relations cast \Delta F in terms of a characteristic function of a probability distribution, this relation casts F(t) in terms of a characteristic function of a (summed) quasiprobability distribution. Quasiprobabilities reflect entanglement, as the OTOC does.


Collaborators and I are extending this work theoretically and experimentally. How does the quasiprobability look? How does it behave? What mathematical properties does it have? The OTOC is motivating questions not only about our quasiprobability, but also about quasiprobability and weak measurements. We’re pushing toward measuring the OTOC quasiprobability with superconducting qubits or cold atoms.

Chaos has evolved from an enemy to a curiosity, from a god of destruction to an inspiration. I no longer play the electric-blue hedgehog. But I remain electrified.


1I hadn’t started studying physics, ok?

2Don’t ask me how the liquid’s surface tension rises enough to maintain the limbs’ shapes.

3Black holes obey quantum mechanics. Quantum systems can solve certain problems more quickly than ordinary (classical) computers. Computers make mistakes. We fix mistakes using error-correcting codes. The codes required by quantum computers differ from the codes required by ordinary computers. Systems that contain black holes, we can regard as performing quantum computations. Black-hole systems’ mistakes admit of correction via the code constructed by Beni & co. 

Hamiltonian: An American Musical (without Americana or music)

Author’s note: I intended to post this article three months ago. Other developments delayed the release. Thanks in advance for pardoning the untimeliness.

Critics are raving about it. Barak Obama gave a speech about it. It’s propelled two books onto bestseller lists. Committees have showered more awards on it than clouds have showered rain on California this past decade.

What is it? The Hamiltonian, represented by \hat{H}. It’s an operator (a mathematical object) that basically represents a system’s energy. Hamiltonians characterize systems classical and quantum, from a brick in a Broadway theater to the photons that form a spotlight. \hat{H} determines how a system evolves, or changes in time.


I lied: Obama didn’t give a speech about the Hamiltonian. He gave a speech about Hamilton. Hamilton: An American Musical spotlights 18th-century revolutionary Alexander Hamilton. Hamilton conceived the United States’s national bank. He nurtured the economy as our first Secretary of the Treasury. The year after Alexander Hamilton died, William Rowan Hamilton was born. Rowan Hamilton conceived four-dimensional numbers called quaternions. He nurtured the style of physics, Hamiltonian mechanics, used to model quantum systems today.


Hamilton has enchanted audiences and critics. Ticket sell out despite costing over $1,000. Tonys, Grammys, and Pulitzers have piled up. Lawmakers, one newspaper reported, ridicule colleagues who haven’t seen the show. One political staff member confessed that “dodging ‘Hamilton’ barbs has affected her work—so much so that she hasn’t returned certain phone calls ‘because I couldn’t handle the anxiety’ of being harangued for her continued failure to see the show.”

Musical-theater fans across the country are applauding Alexander. Hamilton forbid that William Rowan should envy him. Let’s celebrate Hamiltonians.


I’ve been pondering the Hamiltonian


It describes a chain of L sites. L ranges from 10 to 30 in most computer simulations. The cast consists of quantum particles. Each site houses one particle or none. \hat{n}_j represents the number of particles at site j. c_j represents the removal of a particle from site j, and c_j^\dag represents the adding of a particle.

The last term in \hat{H} represents the repulsion between particles that border each other. The “nn” in “E_{\rm nn}” stands for “nearest-neighbor.” The J term encodes particles’ hopping between sites. \hat{c}_j^\dag \hat{c}_{j+1} means, “A particle jumps from site j+1 to site j.”

The first term in \hat{H}, we call disorder. Imagine a landscape of random dips and hills. Imagine, for instance, crouching on the dirt and snow in Valley Forge. Boots and hooves have scuffed the ground. Zoom in; crouch lower. Imagine transplanting the row of sites into this landscape. h_j denotes the height of site j.

Say that the dips sink low and the hills rise high. The disorder traps particles like soldiers behind enemy lines. Particles have trouble hopping. We call this system many-body localized.

Imagine flattening the landscape abruptly, as by stamping on the snow. This flattening triggers a phase transition.  Phase transitions are drastic changes, as from colony to country. The flattening frees particles to hop from site to site. The particles spread out, in accordance with the Hamiltonian’s J term. The particles come to obey thermodynamics, a branch of physics that I’ve effused about.

The Hamiltonian encodes repulsion, hopping, localization, thermalization, and more behaviors. A richer biography you’ll not find amongst the Founding Fathers.


As Hamiltonians constrain particles, politics constrain humans. A play has primed politicians to smile upon the name “Hamilton.” Physicists study Hamiltonians and petition politicians for funding. Would politicians fund us more if we emphasized the Hamiltonians in our science?

Gold star for whoever composes the most rousing lyrics about many-body localization. Or, rather, fifty white stars.