Topological qubits: Arriving in 2018?

Editor‘s note: This post was prepared jointly by Ryan Mishmash and Jason Alicea.

Physicists appear to be on the verge of demonstrating proof-of-principle “usefulness” of small quantum computers.  Preskill’s notion of quantum supremacy spotlights a particularly enticing goal: use a quantum device to perform some computation—any computation in fact—that falls beyond the reach of the world’s best classical computers.  Efforts along these lines are being vigorously pursued along many fronts, from academia to large corporations to startups.  IBM’s publicly accessible 16-qubit superconducting device, Google’s pursuit of a 7×7 superconducting qubit array, and the recent synthesis of a 51-qubit quantum simulator using rubidium atoms are a few of many notable highlights.  While the number of qubits obtainable within such “conventional” approaches has steadily risen, synthesizing the first “topological qubit” remains an outstanding goal.  That ceiling may soon crumble however—vaulting topological qubits into a fascinating new chapter in the quest for scalable quantum hardware.

Why topological quantum computing?

As quantum computing progresses from minimalist quantum supremacy demonstrations to attacking real-world problems, hardware demands will naturally steepen.  In, say, a superconducting-qubit architecture, a major source of overhead arises from quantum error correction needed to combat decoherence.  Quantum-error-correction schemes such as the popular surface-code approach encode a single fault-tolerant logical qubit in many physical qubits, perhaps thousands.  The number of physical qubits required for practical applications can thus rapidly balloon.

The dream of topological quantum computing (introduced by Kitaev) is to construct hardware inherently immune to decoherence, thereby mitigating the need for active error correction.  In essence, one seeks physical qubits that by themselves function as good logical qubits.  This lofty objective requires stabilizing exotic phases of matter that harbor emergent particles known as “non-Abelian anyons”.  Crucially, nucleating non-Abelian anyons generates an exponentially large set of ground states that cannot be distinguished from each other by any local measurement.  Topological qubits encode information in those ground states, yielding two key virtues:

(1) Insensitivity to local noise.  For reference, consider a conventional qubit encoded in some two-level system, with the 0 and 1 states split by an energy \hbar \omega.  Local noise sources—e.g., random electric and magnetic fields—cause that splitting to fluctuate stochastically in time, dephasing the qubit.  In practice one can engender immunity against certain environmental perturbations.  One famous example is the transmon qubit (see “Charge-insensitive qubit design derived from the Cooper pair box” by Koch et al.) used extensively at IBM, Google, and elsewhere.  The transmon is a superconducting qubit that cleverly suppresses the effects of charge noise by operating in a regime where Josephson couplings are sizable compared to charging energies.  Transmons remain susceptible, however, to other sources of randomness such as flux noise and critical-current noise.  By contrast, topological qubits embed quantum information in global properties of the system, building in immunity against all local noise sources.  Topological qubits thus realize “perfect” quantum memory.

(2) Perfect gates via braiding.  By exploiting the remarkable phenomenon of non-Abelian statistics, topological qubits further enjoy “perfect” quantum gates: Moving non-Abelian anyons around one another reshuffles the system among the ground states—thereby processing the qubits—in exquisitely precise ways that depend only on coarse properties of the exchange.

Disclaimer: Adjectives like “perfect” should come with the qualifier “up to exponentially small corrections”, a point that we revisit below.

Experimental status

The catch is that systems supporting non-Abelian anyons are not easily found in nature.  One promising topological-qubit implementation exploits exotic 1D superconductors whose ends host “Majorana modes”—novel zero-energy degrees of freedom that underlie non-Abelian-anyon physics.  In 2010, two groups (Lutchyn et al. and Oreg et al.) proposed a laboratory realization that combines semiconducting nanowires, conventional superconductors, and modest magnetic fields.

Since then, the materials-science progress on nanowire-superconductor hybrids has been remarkable.  Researchers can now grow extremely clean, versatile devices featuring various manipulation and readout bells and whistles.  These fabrication advances paved the way for experiments that have reported increasingly detailed Majorana characteristics: tunneling signatures including recent reports of long-sought quantized response, evolution of Majorana modes with system size, mapping out of the phase diagram as a function of external parameters, etc.  Alternate explanations are still being debated though.  Perhaps the most likely culprit are conventional localized fermionic levels (“Andreev bound states”) that can imitate Majorana signatures under certain conditions; see in particular Liu et al.  Still, the collective experimental effort on this problem over the last 5+ years has provided mounting evidence for the existence of Majorana modes.  Revealing their prized quantum-information properties poses a logical next step.

Validating a topological qubit

Ideally one would like to verify both hallmarks of topological qubits noted above—“perfect” insensitivity to local noise and “perfect” gates via braiding.  We will focus on the former property, which can be probed in simpler device architectures.  Intuitively, noise insensitivity should imply long qubit coherence times.  But how do you pinpoint the topological origin of long coherence times, and in any case what exactly qualifies as “long”?

Here is one way to sharply address these questions (for more details, see our work in Aasen et al.).  As alluded to in our disclaimer above, logical 0 and 1 topological-qubit states aren’t exactly degenerate.  In nanowire devices they’re split by an energy \hbar \omega that is exponentially small in the separation distance L between Majorana modes divided by the superconducting coherence length \xi.  Correspondingly, the qubit states are not quite locally indistinguishable either, and hence not perfectly immune to local noise.  Now imagine pulling apart Majorana modes to go from a relatively poor to a perfect topological qubit.  During this process two things transpire in tandem: The topological qubit’s oscillation frequency, \omega, vanishes exponentially while the dephasing time T_2 becomes exponentially long.  That is,


This scaling relation could in fact be used as a practical definition of a topologically protected quantum memory.  Importantly, mimicking this property in any non-topological qubit would require some form of divine intervention.  For example, even if one fine-tuned conventional 0 and 1 qubit states (e.g., resulting from the Andreev bound states mentioned above) to be exactly degenerate, local noise could still readily produce dephasing.

As discussed in Aasen et al., this topological-qubit scaling relation can be tested experimentally via Ramsey-like protocols in a setup that might look something like the following:


This device contains two adjacent Majorana wires (orange rectangles) with couplings controlled by local gates (“valves” represented by black switches).  Incidentally, the design was inspired by a gate-controlled variation of the transmon pioneered in Larsen et al. and de Lange et al.  In fact, if only charge noise was present, we wouldn’t stand to gain much in the way of coherence times: both the transmon and topological qubit would yield exponentially long T_2 times.  But once again, other noise sources can efficiently dephase the transmon, whereas a topological qubit enjoys exponential protection from all sources of local noise.  Mathematically, this distinction occurs because the splitting for transmon qubit states is exponentially flat only with respect to variations in a “gate offset” n_g.  For the topological qubit, the splitting is exponentially flat with respect to variations in all external parameters (e.g., magnetic field, chemical potential, etc.), so long as Majorana modes still survive.  (By “exponentially flat” we mean constant up to exponentially small deviations.)  Plotting the energies of the qubit states in the two respective cases versus external parameters, the situation can be summarized as follows:


Outlook: Toward “topological quantum ascendancy”

These qubit-validation experiments constitute a small stepping stone toward building a universal topological quantum computer.  Explicitly demonstrating exponentially protected quantum information as discussed above would, nevertheless, go a long way toward establishing practical utility of Majorana-based topological qubits.  One might even view this goal as single-qubit-level “topological quantum ascendancy”.  Completion of this milestone would further set the stage for implementing “perfect” quantum gates, which requires similar capabilities albeit in more complex devices.  Researchers at Microsoft and elsewhere have their sights set on bringing a prototype topological qubit to life in the very near future.  It is not unreasonable to anticipate that 2018 will mark the debut of the topological qubit.  We could of course be off target.  There is, after all, still plenty of time in 2017 to prove us wrong.

The sign problem(s)

The thirteen-month-old had mastered the word “dada” by the time I met her. Her parents were teaching her to communicate other concepts through sign language. Picture her, dark-haired and bibbed, in a high chair. Banana and mango slices litter the tray in front of her. More fruit litters the floor in front of the tray. The baby lifts her arms and flaps her hands.

Dada looks up from scrubbing the floor.

“Look,” he calls to Mummy, “she’s using sign language! All done.” He performs the gesture that his daughter seems to have aped: He raises his hands and rotates his forearms about his ulnas, axes perpendicular to the floor. “All done!”

The baby looks down, seizes another morsel, and stuffs it into her mouth.

“Never mind,” Dada amends. “You’re not done, are you?”

His daughter had a sign(-language) problem.


So does Dada, MIT professor Aram Harrow. Aram studies quantum information theory. His interests range from complexity to matrices, from resource theories to entropies. He’s blogged for The Quantum Pontiff, and he studies—including with IQIM postdoc Elizabeth Crossonthe quantum sign problem.

Imagine calculating properties of a chunk of fermionic quantum matter. The chunk consists of sites, each inhabited by one particle or by none. Translate as “no site can house more than one particle” the jargon “the particles are fermions.”

The chunk can have certain amounts of energy. Each amount E_j corresponds to some particle configuration indexed by j: If the system has some amount E_1 of energy, particles occupy certain sites and might not occupy others. If the system has a different amount E_2 \neq E_1 of energy, particles occupy different sites. A Hamiltonian, a mathematical object denoted by H, encodes the energies E_j and the configurations. We represent H with a matrix, a square grid of numbers.

Suppose that the chunk has a temperature T = \frac{ 1 }{ k_{\rm B} \beta }. We could calculate the system’s heat capacity, the energy required to raise the chunk’s temperature by one Kelvin. We could calculate the free energy, how much work the chunk could perform in powering a motor or lifting a weight. To calculate those properties, we calculate the system’s partition function, Z.

How? We would list the configurations j. With each configuration, we would associate the weight e^{ - \beta E_j }. We would sum the weights: Z = e^{ - \beta E_1 }  +  e^{ - \beta E_2}  +  \ldots  =  \sum_j e^{ - \beta E_j}.

Easier—like feeding a 13-month-old—said than done. Let N denote the number of qubits in the chunk. If N is large, the number of configurations is gigantic. Our computers can’t process so many configurations. This inability underlies quantum computing’s promise of speeding up certain calculations.

We don’t have quantum computers, and we can’t calculate Z. Can we  approximate Z?

Yes, if H “lacks the sign problem.” The math that models our system models also a classical system. If our system has D dimensions, the classical system has D+1 dimensions. Suppose, for example, that our sites form a line. The classical system forms a square.

We replace the weights e^{ - \beta E_j } with different weights—numbers formed from a matrix that represents H. If H lacks the sign problem, the new weights are nonnegative and behave like probabilities. Many mathematical tools suit probabilities. Aram and Elizabeth apply such tools to Z, here and here, as do many other researchers.

We call Hamiltonians that lack the sign problem “stoquastic,” which I think fanquastic.Stay tuned for a blog post about stoquasticity by Elizabeth.

What if H has the sign problem? The new weights can assume negative and nonreal values. The weights behave unlike probabilities; we can’t apply those tools. We find ourselves knee-deep in banana and mango chunks.

Mango chunks

Solutions to the sign problem remain elusive. Theorists keep trying to mitigate the problem, though. Aram, Elizabeth, and others are improving calculations of properties of sign-problem-free systems. One scientist-in-the-making has achieved a breakthrough: Aram’s daughter now rotates her hands upon finishing meals and when she wants to leave her car seat or stroller.

One sign problem down; one to go.


With gratitude to Aram’s family for its hospitality and to Elizabeth Crosson for sharing her expertise.

1For experts: A local Hamiltonian is stoquastic relative to the computational basis if each local term is represented, relative to the computational basis, by a matrix whose off-diagonal entries are real and nonpositive.

Time capsule at the Dibner Library

The first time I met Lilla Vekerdy, she was holding a book.

“What’s that?” I asked.

“A second edition of Galileo’s Siderius nuncius. Here,” she added, thrusting the book into my hands. “Take it.”

So began my internship at the Smithsonian Institution’s Dibner Library for the History of Science and Technology.

Many people know the Smithsonian for its museums. The Smithsonian, they know, houses the ruby slippers worn by Dorothy in The Wizard of Oz. The Smithsonian houses planes constructed by Orville and Wilbur Wright, the dresses worn by First Ladies on presidential inauguration evenings, a space shuttle, and a Tyrannosaurus Rex skeleton. Smithsonian museums line the National Mall in Washington, D.C.—the United States’ front lawn—and march beyond.

Most people don’t know that the Smithsonian has 21 libraries.

Lilla heads the Smithsonian Libraries’ Special-Collections Department. She also directs a library tucked into a corner of the National Museum of American History. I interned at that library—the Dibner—in college. Images of Benjamin Franklin, of inventor Eli Whitney, and of astronomical instruments line the walls. The reading room contains styrofoam cushions on which scholars lay crumbling rare books. Lilla and the library’s technician, Morgan Aronson, find references for researchers, curate exhibitions, and introduce students to science history. They also care for the vault.

The vault. How I’d missed the vault.


A corner of the Dibner’s reading room and part of the vault

The vault contains manuscripts and books from the past ten centuries. We handle the items without gloves, which reduce our fingers’ sensitivities: Interpose gloves between yourself and a book, and you’ll raise your likelihood of ripping a page. A temperature of 65°F inhibits mold from growing. Redrot mars some leather bindings, though, and many crowns—tops of books’ spines—have collapsed. Aging carries hazards.

But what the ages have carried to the Dibner! We1 have a survey filled out by Einstein and a first edition of Newton’s Principia mathematica. We have Euclid’s Geometry in Latin, Arabic, and English, from between 1482 and 1847. We have a note, handwritten by quantum physicist Erwin Schödinger, about why students shouldn’t fear exams.

I returned to the Dibner one day this spring. Lilla and I fetched out manuscripts and books related to quantum physics and thermodynamics. “Hermann Weyl” labeled one folder.

Weyl contributed to physics and mathematics during the early 1900s. I first encountered his name when studying particle physics. The Dibner, we discovered, owns a proof for part of his 1928 book Gruppentheorie und Quantenmechanik. Weyl appears to have corrected a typed proof by hand. He’d handwritten also spin matrices.

Electrons have a property called “spin.” Spin resembles a property of yours, your position relative to the Earth’s center. We represent your position with three numbers: your latitude, your longitude, and your distance above the Earth’s surface. We represent electron spin with three blocks of numbers, three 2 \times 2 matrices. Today’s physicists write the matrices as2

S_x  = \begin{bmatrix}  0  &  1  \\  1  &  0  \end{bmatrix}  \, , \quad  S_y  = \begin{bmatrix}  0  &  -i  \\  i  &  0  \end{bmatrix}  \, , \quad \text{and} \quad  S_z  = \begin{bmatrix}  -1  &  0  \\  0  &  1  \end{bmatrix} \, .

We needn’t write these matrices. We could represent electron spin with different 2 \times 2 matrices, so long as the matrices obey certain properties. But most physicists choose the above matrices, in my experience. We call our choice “a convention.”

Weyl chose a different convention:

S_x  = \begin{bmatrix}  1  &  0  \\  0  &  -1  \end{bmatrix}  \, , \quad  S_y  = \begin{bmatrix}  0  &  1  \\  1  &  0  \end{bmatrix}  \, , \quad \text{and} \quad  S_z  = \begin{bmatrix}  0  &  i  \\  -i  &  0  \end{bmatrix} \, .

The difference surprised me. Perhaps it shouldn’t have: Conventions change. Approaches to quantum physics change. Weyl’s matrices differ from ours little: Permute our matrices and negate one matrix, and you recover Weyl’s.

But the electron-spin matrices play a role, in quantum physics, like the role played by T. Rex in paleontology exhibits: All quantum scientists recognize electron spin. We illustrate with electron spin in examples. Students memorize spin matrices in undergrad classes. Homework problems feature electron spin. Physicists have known of electron spin’s importance for decades. I didn’t expect such a bedrock to have changed its trappings.

How did scientists’ convention change? When did it? Why? Or did the convention not change—did Weyl’s contemporaries use today’s convention, and did Weyl stand out?

Weyl 2

A partially typed, partially handwritten, proof of a book by Hermann Weyl.

I intended to end this article with these questions. I sent a draft to John Preskill, proposing to post soon. But he took up the questions like a knight taking up arms.

Wolfgang Pauli, John emailed, appears to have written the matrices first. (Physicist call the matrices “Pauli matrices.”) A 1927 paper by Pauli contains the notation used today. Paul Dirac copied the notation in a 1928 paper, acknowledging Pauli. Weyl’s book appeared the same year. The following year, Weyl used Pauli’s notation in a paper.

No document we know of, apart from the Dibner proof, contains the Dibner-proof notation. Did the notation change between the proof-writing and publication? Does the Dibner hold the only anomalous electron-spin matrices? What accounts for the anomaly?

If you know, feel free to share. If you visit DC, drop Lilla and Morgan a line. Bring a research project. Bring a class. Bring zeal for the past. You might find yourself holding a time capsule by Galileo.

Lilla and me

Dibner librarian Lilla Vekerdy and a former intern

With thanks to Lilla and Morgan for their hospitality, time, curiosity, and expertise. With thanks to John for burrowing into the Pauli matrices’ history.

1I continue to count myself as part of the Dibner community. Part of me refuses to leave.

2I’ll omit factors of \hbar / 2 \, .

The power of information

Sara Imari Walker studies ants. Her entomologist colleague Gabriele Valentini cultivates ant swarms. Gabriele coaxes a swarm from its nest, hides the nest, and offers two alternative nests. Gabriele observe the ants’ responses, then analyzes their data with Sara.

Sara doesn’t usually study ants. She trained in physics, information theory, and astrobiology. (Astrobiology is the study of life; life’s origins; and conditions amenable to life, on Earth and anywhere else life may exist.) Sara analyzes how information reaches, propagates through, and manifests in the swarm.

Some ants inspect one nest; some, the other. Few ants encounter both choices. Yet most of the ants choose simultaneously. (How does Gabriele know when an ant chooses? Decided ants carry other ants toward the chosen nest. Undecided ants don’t.)

Gabriele and Sara plotted each ant’s status (decided or undecided) at each instant. All the ants’ lines start in the “undecided” region, high up in the graph. Most lines drop to the “decided” region together. Physicists call such dramatic, large-scale changes in many-particle systems “phase transitions.” The swarm transitions from the “undecided” phase to the “decided,” as moisture transitions from vapor to downpour.

Sara presentation

Sara versus the ants

Look from afar, and you’ll see evidence of a hive mind: The lines clump and slump together. Look more closely, and you’ll find lags between ants’ decisions. Gabriele and Sara grouped the ants according to their behaviors. Sara explained the grouping at a workshop this spring.

The green lines, she said, are undecided ants.

My stomach dropped like Gabriele and Sara’s ant lines.

People call data “cold” and “hard.” Critics lambast scientists for not appealing to emotions. Politicians weave anecdotes into their numbers, to convince audiences to care.

But when Sara spoke, I looked at her green lines and thought, “That’s me.”

I’ve blogged about my indecisiveness. Postdoc Ning Bao and I formulated a quantum voting scheme in which voters can superpose—form quantum combinations of—options. Usually, when John Preskill polls our research group, I abstain from voting. Politics, and questions like “Does building a quantum computer require only engineering or also science?”,1 have many facets. I want to view such questions from many angles, to pace around the questions as around a sculpture, to hear other onlookers, to test my impressions on them, and to cogitate before choosing.2 However many perspectives I’ve gathered, I’m missing others worth seeing. I commiserated with the green-line ants.


I first met Sara in the building behind the statue. Sara earned her PhD in Dartmouth College’s physics department, with Professor Marcelo Gleiser.

Sara presented about ants at a workshop hosted by the Beyond Center for Fundamental Concepts in Science at Arizona State University (ASU). The organizers, Paul Davies of Beyond and Andrew Briggs of Oxford, entitled the workshop “The Power of Information.” Participants represented information theory, thermodynamics and statistical mechanics, biology, and philosophy.

Paul and Andrew posed questions to guide us: What status does information have? Is information “a real thing” “out there in the world”? Or is information only a mental construct? What roles can information play in causation?

We paced around these questions as around a Chinese viewing stone. We sat on a bench in front of those questions, stared, debated, and cogitated. We taught each other about ants, artificial atoms, nanoscale machines, and models for information processing.


Chinese viewing stone in Yuyuan Garden in Shanghai

I wonder if I’ll acquire opinions about Paul and Andrew’s questions. Maybe I’ll meander from “undecided” to “decided” over a career. Maybe I’ll phase-transition like Sara’s ants. Maybe I’ll remain near the top of her diagram, a green holdout.

I know little about information’s power. But Sara’s plot revealed one power of information: Information can move us—from homeless to belonging, from ambivalent to decided, from a plot’s top to its bottom, from passive listener to finding yourself in a green curve.


With thanks to Sara Imari Walker, Paul Davies, Andrew Briggs, Katherine Smith, and the Beyond Center for their hospitality and thoughts.


1By “only engineering,” I mean not “merely engineering” pejoratively, but “engineering and no other discipline.”

2I feel compelled to perform these activities before choosing. I try to. Psychological experiments, however, suggest that I might decide before realizing that I’ve decided.

Modern Physics Education?

Being the physics department executive officer (on top of being a quantum physicist) makes me think a lot about our physics college program. It is exciting. We start with mechanics, and then go to electromagnetism (E&M) and relativity, then to quantum and statistical mechanics, and then to advanced mathematical methods, analytical mechanics and more E&M. The dessert is usually field theory, astrophysics and advanced lab. You can take some advanced courses, introducing condensed matter, quantum computation, particle theory, AMO, general relativity, nuclear physics, etc. By the time we are done with college, we definitely feel like we know a lot.

But in the end of all that, what do we know about modern physics? Certainly we all took a class called ‘modern physics’. Or should I say ‘”modern” physics’? Because, I’m guessing, the modern physics class heavily featured the Stern-Gerlach experiment (1922) and mentions of De-Broglie, Bohr, and Dirac quite often. Don’t get me wrong: great physics, and essential. But modern?

So what would be modern physics? What should we teach that does not predate 1960? By far the biggest development in my neck of the woods is easy access to computing power. Even I can run simulations for a Schroedinger equation (SE) with hundreds of sites and constantly driven. Even I can diagonalize a gigantic matrix that corresponds to a Mott-Hubbard model of 15 or maybe even 20 particles. What’s more, new approximate algorithms capture the many-body quantum dynamics, and ground states of chains with 100s of sites. These are the DMRG (density matrix renormalization group) and MPS (matrix product states) (see for a review of DMRG, and for a review of MPS, both by the inspiring Uli Schollwoeck).

Should we teach that? Isn’t it complicated? Yes and no. Respectively – not simultaneously. We should absolutely teach it. And no – it is really not complicated. That’s the point – it is simpler than Schroedinger’s equation! How do we teach it? I am not sure yet, but certainly there is a junior level time slot for computational quantum mechanics somewhere.

What else? Once we think about it, the flood gates open. Condensed matter just gave us a whole new paradigm for semi-conductors: topological insulators. Definitely need to teach that – and it is pure 21st century! Tough? Not at all, just solving SE on a lattice. Not tough? Well, maybe not trivial, but is it any tougher than finding the orbitals of Hydrogen? (at the risk of giving you nightmares, remember Laguerre polynomials? Oh – right – you won’t get any nightmares, because, most likely, you don’t remember!)

With that let me take a shot at the standard way that quantum mechanics is taught. Roughly a quantum class goes like this: wave-matter duality; SE; free particle; box; harmonic oscillator, spin, angular momentum, hydrogen atom. This is a good program for atomic physics, and possibly field theory. But by and large, this is the quantum mechanics of vacuum. What about quantum mechanics of matter? Is Feynman path integral really more important than electron waves in solids? All physics is beautiful. But can’t Feynman wait while we teach tight binding models?

And I’ll stop here, before I get started on hand-on labs, as well as the fragmented nature of our programs.

Question to you all out there: Suppose we go and modernize (no quotes) our physics program. What should we add? What should we take away? And we all agree – all physics is Beautiful! I’m sure I have my blind spots, so please comment!

Glass beads and weak-measurement schemes

Richard Feynman fiddled with electronics in a home laboratory, growing up. I fiddled with arts and crafts.1 I glued popsicle sticks, painted plaques, braided yarn, and designed greeting cards. Of the supplies in my family’s crafts box, I adored the beads most. Of the beads, I favored the glass ones.

I would pour them on the carpet, some weekend afternoons. I’d inherited a hodgepodge: The beads’ sizes, colors, shapes, trimmings, and craftsmanship varied. No property divided the beads into families whose members looked like they belonged together. But divide the beads I tried. I might classify them by color, then subdivide classes by shape. The color and shape groupings precluded me from grouping by size. But, by loosening my original classification and combining members from two classes, I might incorporate trimmings into the categorization. I’d push my classification scheme as far as I could. Then, I’d rake the beads together and reorganize them according to different principles.

Why have I pursued theoretical physics? many people ask. I have many answers. They include “Because I adored organizing craft supplies at age eight.” I craft and organize ideas.


I’ve blogged about the out-of-time-ordered correlator (OTOC), a signature of how quantum information spreads throughout a many-particle system. Experimentalists want to measure the OTOC, to learn how information spreads. But measuring the OTOC requires tight control over many quantum particles.

I proposed a scheme for measuring the OTOC, with help from Chapman University physicist Justin Dressel. The scheme involves weak measurements. Weak measurements barely disturb the systems measured. (Most measurements of quantum systems disturb the measured systems. So intuited Werner Heisenberg when formulating his uncertainty principle.)

I had little hope for the weak-measurement scheme’s practicality. Consider the stereotypical experimentalist’s response to a stereotypical experimental proposal by a theorist: Oh, sure, we can implement that—in thirty years. Maybe. If the pace of technological development doubles. I expected to file the weak-measurement proposal in the “unfeasible” category.

But experimentalists started collaring me. The scheme sounds reasonable, they said. How many trials would one have to perform? Did the proposal require ancillas, helper systems used to control the measured system? Must each ancilla influence the whole measured system, or could an ancilla interact with just one particle? How did this proposal compare with alternatives?

I met with a cavity-QED2 experimentalist and a cold-atoms expert. I talked with postdocs over skype, with heads of labs at Caltech, with grad students in Taiwan, and with John Preskill in his office. I questioned an NMR3 experimentalist over lunch and fielded superconducting-qubit4 questions in the sunshine. I read papers, reread papers, and powwowed with Justin.

I wouldn’t have managed half so well without Justin and without Brian Swingle. Brian and coauthors proposed the first OTOC-measurement scheme. He reached out after finding my first OTOC paper.

According to that paper, the OTOC is a moment of a quasiprobability.5 How does that quasiprobability look, we wondered? How does it behave? What properties does it have? Our answers appear in a paper we released with Justin this month. We calculate the quasiprobability in two examples, prove properties of the quasiprobability, and argue that the OTOC motivates generalizations of quasiprobability theory. We also enhance the weak-measurement scheme and analyze it.

Amidst that analysis, in a 10 x 6 table, we classify glass beads.


We inventoried our experimental conversations and distilled them. We culled measurement-scheme features analogous to bead size, color, and shape. Each property labels a row in the table. Each measurement scheme labels a column. Each scheme has, I learned, gold flecks and dents, hues and mottling, an angle at which it catches the light.

I’ve kept most of the glass beads that fascinated me at age eight. Some of the beads have dispersed to necklaces, picture frames, and eyeglass leashes. I moved the remnants, a few years ago, to a compartmentalized box. Doesn’t it resemble the table?


That’s why I work at the IQIM.


1I fiddled in a home laboratory, too, in a garage. But I lived across the street from that garage. I lived two rooms from an arts-and-crafts box.

2Cavity QED consists of light interacting with atoms in a box.

3Lots of nuclei manipulated with magnetic fields. “NMR” stands for “nuclear magnetic resonance.” MRI machines, used to scan brains, rely on NMR.

4Superconducting circuits are tiny, cold quantum circuits.

5A quasiprobability resembles a probability but behaves more oddly: Probabilities range between zero and one; quasiprobabilities can dip below zero. Think of a moment as like an average.

With thanks to all who questioned me; to all who answered questions of mine; to my wonderful coauthors; and to my parents, who stocked the crafts box.

Local operations and Chinese communications

The workshop spotlighted entanglement. It began in Shanghai, paused as participants hopped the Taiwan Strait, and resumed in Taipei. We discussed quantum operations and chaos, thermodynamics and field theory.1 I planned to return from Taipei to Shanghai to Los Angeles.

Quantum thermodynamicist Nelly Ng and I drove to the Taipei airport early. News from Air China curtailed our self-congratulations: China’s military was running an operation near Shanghai. Commercial planes couldn’t land. I’d miss my flight to LA.


Two quantum thermodynamicists in Shanghai

An operation?

Quantum information theorists use a mindset called operationalism. We envision experimentalists in separate labs. Call the experimentalists Alice, Bob, and Eve (ABE). We tell stories about ABE to formulate and analyze problems. Which quantum states do ABE prepare? How do ABE evolve, or manipulate, the states? Which measurements do ABE perform? Do they communicate about the measurements’ outcomes?

Operationalism concretizes ideas. The outlook checks us from drifting into philosophy and into abstractions difficult to apply physics tools to.2 Operationalism infuses our language, our framing of problems, and our mathematical proofs.

Experimentalists can perform some operations more easily than others. Suppose that Alice controls the magnets, lasers, and photodetectors in her lab; Bob controls the equipment in his; and Eve controls the equipment in hers. Each experimentalist can perform local operations (LO). Suppose that Alice, Bob, and Eve can talk on the phone and send emails. They exchange classical communications (CC).

You can’t generate entanglement using LOCC. Entanglement consists of strong correlations that quantum systems can share and that classical systems can’t. A quantum system in Alice’s lab can hold more information about a quantum system of Bob’s than any classical system could. We must create and control entanglement to operate quantum computers. Creating and controlling entanglement poses challenges. Hence quantum information scientists often model easy-to-perform operations with LOCC.

Suppose that some experimentalist Charlie loans entangled quantum systems to Alice, Bob, and Eve. How efficiently can ABE compute some quantity, exchange quantum messages, or perform other information-processing tasks, using that entanglement? Such questions underlie quantum information theory.


Taipei’s night market. Or Caltech’s neighborhood?

Local operations.

Nelly and I performed those, trying to finagle me to LA. I inquired at Air China’s check-in desk in English. Nelly inquired in Mandarin. An employee smiled sadly at each of us.

We branched out into classical communications. I called Expedia (“No, I do not want to fly to Manila”), United Airlines (“No flights for two days?”), my credit-card company, Air China’s American reservations office, Air China’s Chinese reservations office, and Air China’s Taipei reservations office. I called AT&T to ascertain why I couldn’t reach Air China (“Yes, please connect me to the airline. Could you tell me the number first? I’ll need to dial it after you connect me and the call is then dropped”).

As I called, Nelly emailed. She alerted Bob, aka Janet (Ling-Yan) Hung, who hosted half the workshop at Fudan University in Shanghai. Nelly emailed Eve, aka Feng-Li Lin, who hosted half the workshop at National Taiwan University in Taipei. Janet twiddled the magnets in her lab (investigated travel funding), and Feng-Li cooled a refrigerator in his.

ABE can process information only so efficiently, using LOCC. The time crept from 1:00 PM to 3:30.


Nelly Ng uses classical communications.

What could we have accomplished with quantum communication? Using LOCC, Alice can manipulate quantum states (like an electron’s orientation) in her lab. She can send nonquantum messages (like “My flight is delayed”) to Bob. She can’t send quantum information (like an electron’s orientation).

Alice and Bob can ape quantum communication, given entanglement. Suppose that Charlie strongly correlates two electrons. Suppose that Charlie gives Alice one electron and gives Bob the other. Alice can send one qubit–one unit of quantum information–to Bob. We call that sending quantum teleportation.

Suppose that air-traffic control had loaned entanglement to Janet, Feng-Li, and me. Could we have finagled me to LA quickly?

Quantum teleportation differs from human teleportation.


We didn’t need teleportation. Feng-Li arranged for me to visit Taiwan’s National Center for Theoretical Sciences (NCTS) for two days. Air China agreed to return me to Shanghai afterward. United would fly me to LA, thanks to help from Janet. Nelly rescued my luggage from leaving on the wrong flight.

Would I rather have teleported? I would have avoided a bushel of stress. But I wouldn’t have learned from Janet about Chinese science funding, wouldn’t have heard Feng-Li’s views about gravitational waves, wouldn’t have glimpsed Taiwanese countryside flitting past the train we rode to the NCTS.

According to some metrics, classical resources outperform quantum.


At Taiwan’s National Center for Theoretical Sciences

The workshop organizers have generously released videos of the lectures. My lecture about quantum chaos and fluctuation relations appears here and here. More talks appear here.

With gratitude to Janet Hung, Feng-Li Lin, and Nelly Ng; to Fudan University, National Taiwan University, and Taiwan’s National Center for Theoretical Sciences for their hospitality; and to Xiao Yu for administrative support.

Glossary and other clarifications:

1Field theory describes subatomic particles and light.

2Physics and philosophy enrich each other. But I haven’t trained in philosophy. I benefit from differentiating physics problems that I’ve equipped to solve from philosophy problems that I haven’t.