Love in the time of thermo

An 81-year-old medical doctor has fallen off a ladder in his house. His pet bird hopped out of his reach, from branch to branch of a tree on the patio. The doctor followed via ladder and slipped. His servants cluster around him, the clamor grows, and he longs for his wife to join him before he dies. She arrives at last. He gazes at her face; utters, “Only God knows how much I loved you”; and expires.

I set the book down on my lap and looked up. I was nestled in a wicker chair outside the Huntington Art Gallery in San Marino, California. Busts of long-dead Romans kept me company. The lawn in front of me unfurled below a sky that—unusually for San Marino—was partially obscured by clouds. My final summer at Caltech was unfurling. I’d walked to the Huntington, one weekend afternoon, with a novel from Caltech’s English library.1

What a novel.

You may have encountered the phrase “love in the time of corona.” Several times. Per week. Throughout the past six months. Love in the Time of Cholera predates the meme by 35 years. Nobel laureate Gabriel García Márquez captured the inhabitants, beliefs, architecture, mores, and spirit of a Colombian city around the turn of the 20th century. His work transcends its setting, spanning love, death, life, obsession, integrity, redemption, and eternity. A thermodynamicist couldn’t ask for more-fitting reading.

Love in the Time of Cholera centers on a love triangle. Fermina Daza, the only child of a wealthy man, excels in her studies. She holds herself with poise and self-assurance, and she spits fire whenever others try to control her. The girl dazzles Florentino Ariza, a poet, who restructures his life around his desire for her. Fermina Daza’s pride impresses Dr. Juvenal Urbino, a doctor renowned for exterminating a cholera epidemic. After rejecting both men, Fermina Daza marries Dr. Juvenal Urbino. The two personalities clash, and one betrays the other, but they cling together across the decades. Florentino Ariza retains his obsession with Fermina Daza, despite having countless affairs. Dr. Juvenal Urbino dies by ladder, whereupon Florentino Ariza swoops in to win Fermina Daza over. Throughout the book, characters mistake symptoms of love for symptoms of cholera; and lovers block out the world by claiming to have cholera and self-quarantining.

As a thermodynamicist, I see the second law of thermodynamics in every chapter. The second law implies that time marches only forward, order decays, and randomness scatters information to the wind. García Márquez depicts his characters aging, aging more, and aging more. Many characters die. Florentino Ariza’s mother loses her memory to dementia or Alzheimer’s disease. A pawnbroker, she buys jewels from the elite whose fortunes have eroded. Forgetting the jewels’ value one day, she mistakes them for candies and distributes them to children.

The second law bites most, to me, in the doctor’s final words, “Only God knows how much I loved you.” Later, the widow Fermina Daza sighs, “It is incredible how one can be happy for so many years in the midst of so many squabbles, so many problems, damn it, and not really know if it was love or not.” She doesn’t know how much her husband loved her, especially in light of the betrayal that rocked the couple and a rumor of another betrayal. Her husband could have affirmed his love with his dying breath, but he refused: He might have loved her with all his heart, and he might not have loved her; he kept the truth a secret to all but God. No one can retrieve the information after he dies.2 

Love in the Time of Cholera—and thermodynamics—must sound like a mouthful of horseradish. But each offers nourishment, an appetizer and an entrée. According to the first law of thermodynamics, the amount of energy in every closed, isolated system remains constant: Physics preserves something. Florentino Ariza preserves his love for decades, despite Fermina Daza’s marrying another man, despite her aging.

The latter preservation can last only so long in the story: Florentino Ariza, being mortal, will die. He claims that his love will last “forever,” but he won’t last forever. At the end of the novel, he sails between two harbors—back and forth, back and forth—refusing to finish crossing a River Styx. I see this sailing as prethermalization: A few quantum systems resist thermalizing, or flowing to the physics analogue of death, for a while. But they succumb later. Florentino Ariza can’t evade the far bank forever, just as the second law of thermodynamics forbids his boat from functioning as a perpetuum mobile.

Though mortal within his story, Florentino Ariza survives as a book character. The book survives. García Márquez wrote about a country I’d never visited, and an era decades before my birth, 33 years before I checked his book out of the library. But the book dazzled me. It pulsed with the vibrancy, color, emotion, and intellect—with the fullness—of life. The book gained another life when the coronavius hit. Thermodynamics dictates that people age and die, but the laws of thermodynamics remain.3 I hope and trust—with the caveat about humanity’s not destroying itself—that Love in the Time of Cholera will pulse in 350 years. 

What’s not to love?

1Yes, Caltech has an English library. I found gems in it, and the librarians ordered more when I inquired about books they didn’t have. I commend it to everyone who has access.

2I googled “Only God knows how much I loved you” and was startled to see the line depicted as a hallmark of romance. Please tell your romantic partners how much you love them; don’t make them guess till the ends of their lives.

3Lee Smolin has proposed that the laws of physics change. If they do, the change seems to have to obey metalaws that remain constant.

If the (quantum-metrology) key fits…

My maternal grandfather gave me an antique key when I was in middle school. I loved the workmanship: The handle consisted of intertwined loops. I loved the key’s gold color and how the key weighed on my palm. Even more, I loved the thought that the key opened something. I accompanied my mother to antique shops, where I tried unlocking chests, boxes, and drawers.

Z

My grandfather’s antique key

I found myself holding another such key, metaphorically, during the autumn of 2018. MIT’s string theorists had requested a seminar, so I presented about quasiprobabilities. Quasiprobabilities represent quantum states similarly to how probabilities represent a swarm of classical particles. Consider the steam rising from asphalt on a summer day. Calculating every steam particle’s position and momentum would require too much computation for you or me to perform. But we can predict the probability that, if we measure every particle’s position and momentum, we’ll obtain such-and-such outcomes. Probabilities are real numbers between zero and one. Quasiprobabilities can assume negative and nonreal values. We call these values “nonclassical,” because they’re verboten to the probabilities that describe classical systems, such as steam. I’d defined a quasiprobability, with collaborators, to describe quantum chaos. 

k2

David Arvidsson-Shukur was sitting in the audience. David is a postdoctoral fellow at the University of Cambridge and a visiting scholar in the other Cambridge (at MIT). He has a Swedish-and-southern-English accent that I’ve heard only once before and, I learned over the next two years, an academic intensity matched by his kindliness.1 Also, David has a name even longer than mine: David Roland Miran Arvidsson-Shukur. We didn’t know then, but we were destined to journey together, as postdoctoral knights-errant, on a quest for quantum truth.

David studies the foundations of quantum theory: What distinguishes quantum theory from classical? David suspected that a variation on my quasiprobability could unlock a problem in metrology, the study of measurements.

k1

Suppose that you’ve built a quantum computer. It consists of gates—uses of, e.g., magnets or lasers to implement logical operations. A classical gate implements operations such as “add 11.” A quantum gate can implement an operation that involves some number \theta more general than 11. You can try to build your gate correctly, but it might effect the wrong \theta value. You need to measure \theta.

How? You prepare some quantum state | \psi \rangle and operate on it with the gate. \theta imprints itself on the state, which becomes | \psi (\theta) \rangle. Measure some observable \hat{O}. You repeat this protocol in each of many trials. The measurement yields different outcomes in different trials, according to quantum theory. The average amount of information that you learn about \theta per trial is called the Fisher information.

1

Let’s change this protocol. After operating with the gate, measure another observable, \hat{F}, and postselect: If the \hat{F} measurement yields a desirable outcome f, measure \hat{O}. If the \hat{F}-measurement doesn’t yield the desirable outcome, abort the trial, and begin again. If you choose \hat{F} and f adroitly, you’ll measure \hat{O} only when the trial will provide oodles of information about \theta. You’ll save yourself many \hat{O} measurements that would have benefited you little.2

2

Why does postselection help us? We could understand easily if the system were classical: The postselection would effectively improve the input state. To illustrate, let’s suppose that (i) a magnetic field implemented the gate and (ii) the input were metal or rubber. The magnetic field wouldn’t affect the rubber; measuring \hat{O} in rubber trials would provide no information about the field. So you could spare yourself \hat{O} measurements by postselecting on the system’s consisting of metal.

Magnet

Postselection on a quantum system can defy this explanation. Consider optimizing your input state | \psi \rangle, beginning each trial with the quantum equivalent of metal. Postselection could still increase the average amount of information information provided about \theta per trial. Postselection can enhance quantum metrology even when postselection can’t enhance the classical analogue.

David suspected that he could prove this result, using, as a mathematical tool, the quasiprobability that collaborators and I had defined. We fulfilled his prediction, with Hugo Lepage, Aleks Lasek, Seth Lloyd, and Crispin Barnes. Nature Communications published our paper last month. The work bridges the foundations of quantum theory with quantum metrology and quantum information theory—and, through that quasiprobability, string theory. David’s and my quantum quest continues, so keep an eye out for more theory from us, as well as a photonic experiment based on our first paper.

k3

I still have my grandfather’s antique key. I never found a drawer, chest, or box that it opened. But I don’t mind. I have other mysteries to help unlock.

 

1The morning after my wedding this June, my husband and I found a bouquet ordered by David on our doorstep.

2Postselection has a catch: The \hat{F} measurement has a tiny probability of yielding the desirable outcome. But, sometimes, measuring \hat{O} costs more than preparing | \psi \rangle, performing the gate, and postselecting. For example, suppose that the system is a photon. A photodetector will measure \hat{O}. Some photodetectors have a dead time: After firing, they take a while to reset, to be able to fire again. The dead time can outweigh the cost of the beginning of the experiment.

A quantum walk down memory lane

In elementary and middle school, I felt an affinity for the class three years above mine. Five of my peers had siblings in that year. I carpooled with a student in that class, which partnered with mine in holiday activities and Grandparents’ Day revues. Two students in that class stood out. They won academic-achievement awards, represented our school in science fairs and speech competitions, and enrolled in rigorous high-school programs.

Those students came to mind as I grew to know David Limmer. David is an assistant professor of chemistry at the University of California, Berkeley. He studies statistical mechanics far from equilibrium, using information theory. Though a theorist ardent about mathematics, he partners with experimentalists. He can pass as a physicist and keeps an eye on topics as far afield as black holes. According to his faculty page, I discovered while writing this article, he’s even three years older than I. 

I met David in the final year of my PhD. I was looking ahead to postdocking, as his postdoc fellowship was fading into memory. The more we talked, the more I thought, I’d like to be like him.

Playground

I had the good fortune to collaborate with David on a paper published by Physical Review A this spring (as an Editors’ Suggestion!). The project has featured in Quantum Frontiers as the inspiration for a rewriting of “I’m a little teapot.” 

We studied a molecule prevalent across nature and technologies. Such molecules feature in your eyes, solar-fuel-storage devices, and more. The molecule has two clumps of atoms. One clump may rotate relative to the other if the molecule absorbs light. The rotation switches the molecule from a “closed” configuration to an “open” configuration.

Molecular switch

These molecular switches are small, quantum, and far from equilibrium; so modeling them is difficult. Making assumptions offers traction, but many of the assumptions disagreed with David. He wanted general, thermodynamic-style bounds on the probability that one of these molecular switches would switch. Then, he ran into me.

I traffic in mathematical models, developed in quantum information theory, called resource theories. We use resource theories to calculate which states can transform into which in thermodynamics, as a dime can transform into ten pennies at a bank. David and I modeled his molecule in a resource theory, then bounded the molecule’s probability of switching from “closed” to “open.” I accidentally composed a theme song for the molecule; you can sing along with this post.

That post didn’t mention what David and I discovered about quantum clocks. But what better backdrop for a mental trip to elementary school or to three years into the future?

I’ve blogged about autonomous quantum clocks (and ancient Assyria) before. Autonomous quantum clocks differ from quantum clocks of another type—the most precise clocks in the world. Scientists operate the latter clocks with lasers; autonomous quantum clocks need no operators. Autonomy benefits you if you want for a machine, such as a computer or a drone, to operate independently. An autonomous clock in the machine ensures that, say, the computer applies the right logical gate at the right time.

What’s an autonomous quantum clock? First, what’s a clock? A clock has a degree of freedom (e.g., a pair of hands) that represents the time and that moves steadily. When the clock’s hands point to 12 PM, you’re preparing lunch; when the clock’s hands point to 6 PM, you’re reading Quantum Frontiers. An autonomous quantum clock has a degree of freedom that represents the time fairly accurately and moves fairly steadily. (The quantum uncertainty principle prevents a perfect quantum clock from existing.)

Suppose that the autonomous quantum clock constitutes one part of a machine, such as a quantum computer, that the clock guides. When the clock is in one quantum state, the rest of the machine undergoes one operation, such as one quantum logical gate. (Experts: The rest of the machine evolves under one Hamiltonian.) When the clock is in another state, the rest of the machine undergoes another operation (evolves under another Hamiltonian).

Clock 2

Physicists have been modeling quantum clocks using the resource theory with which David and I modeled our molecule. The math with which we represented our molecule, I realized, coincided with the math that represents an autonomous quantum clock.

Think of the molecular switch as a machine that operates (mostly) independently and that contains an autonomous quantum clock. The rotating clump of atoms constitutes the clock hand. As a hand rotates down a clock face, so do the nuclei rotate downward. The hand effectively points to 12 PM when the switch occupies its “closed” position. The hand effectively points to 6 PM when the switch occupies its “open” position.

The nuclei account for most of the molecule’s weight; electrons account for little. They flit about the landscape shaped by the atomic clumps’ positions. The landscape governs the electrons’ behavior. So the electrons form the rest of the quantum machine controlled by the nuclear clock.

Clock 1

Experimentalists can create and manipulate these molecular switches easily. For instance, experimentalists can set the atomic clump moving—can “wind up” the clock—with ultrafast lasers. In contrast, the only other autonomous quantum clocks that I’d read about live in theory land. Can these molecules bridge theory to experiment? Reach out if you have ideas!

And check out David’s theory lab on Berkeley’s website and on Twitter. We all need older siblings to look up to.

Up we go! or From abstract theory to experimental proposal

Mr. Mole is trapped indoors, alone. Spring is awakening outside, but he’s confined to his burrow. Birds are twittering, and rabbits are chattering, but he has only himself for company.

Sound familiar? 

Spring—crocuses, daffodils, and hyacinths budding; leaves unfurling; and birds warbling—burst upon Cambridge, Massachusetts last month. The city’s shutdown vied with the season’s vivaciousness. I relieved the tension by rereading The Wind in the Willows, which I’ve read every spring since 2017. 

Project Gutenberg offers free access to Kenneth Grahame’s 1908 novel. He wrote the book for children, but never mind that. Many masterpieces of literature happen to have been written for children.

Book cover

One line in the novel demanded, last year, that I memorize it. On page one, Mole is cleaning his house beneath the Earth’s surface. He’s been dusting and whitewashing for hours when the spring calls to him. Life is pulsating on the ground and in the air above him, and he can’t resist joining the party. Mole throws down his cleaning supplies and tunnels upward through the soil: “he scraped and scratched and scrabbled and scrooged, and then he scrooged again and scrabbled and scratched and scraped.”

The quotation appealed to me not only because of its alliteration and chiasmus. Mole’s journey reminded me of research. 

Take a paper that I published last month with Michael Beverland of Microsoft Research and Amir Kalev of the Joint Center for Quantum Information and Computer Science (now of the Information Sciences Institute at the University of Southern California). We translated a discovery from the abstract, mathematical language of quantum-information-theoretic thermodynamics into an experimental proposal. We had to scrabble, but we kept on scrooging.

Mole 1

Over four years ago, other collaborators and I uncovered a thermodynamics problem, as did two other groups at the same time. Thermodynamicists often consider small systems that interact with large environments, like a magnolia flower releasing its perfume into the air. The two systems—magnolia flower and air—exchange things, such as energy and scent particles. The total amount of energy in the flower and the air remains constant, as does the total number of perfume particles. So we call the energy and the perfume-particle number conserved quantities. 

We represent quantum conserved quantities with matrices Q_1 and Q_2. We nearly always assume that, in this thermodynamic problem, those matrices commute with each other: Q_1 Q_2 = Q_2 Q_1. Almost no one mentions this assumption; we make it without realizing. Eliminating this assumption invalidates a derivation of the state reached by the small system after a long time. But why assume that the matrices commute? Noncommutation typifies quantum physics and underlies quantum error correction and quantum cryptography.

What if the little system exchanges with the large system thermodynamic quantities represented by matrices that don’t commute with each other?

Magnolia

Colleagues and I began answering this question, four years ago. The small system, we argued, thermalizes to near a quantum state that contains noncommuting matrices. We termed that state, e^{ - \sum_\alpha \beta_\alpha Q_\alpha } / Z, the non-Abelian thermal state. The Q_\alpha’s represent conserved quantities, and the \beta_\alpha’s resemble temperatures. The real number Z ensures that, if you measure any property of the state, you’ll obtain some outcome. Our arguments relied on abstract mathematics, resource theories, and more quantum information theory.

Over the past four years, noncommuting conserved quantities have propagated across quantum-information-theoretic thermodynamics.1 Watching the idea take root has been exhilarating, but the quantum information theory didn’t satisfy me. I wanted to see a real physical system thermalize to near the non-Abelian thermal state.

Michael and Amir joined the mission to propose an experiment. We kept nosing toward a solution, then dislodging a rock that would shower dirt on us and block our path. But we scrabbled onward.

Toad

Imagine a line of ions trapped by lasers. Each ion contains the physical manifestation of a qubit—a quantum two-level system, the basic unit of quantum information. You can think of a qubit as having a quantum analogue of angular momentum, called spin. The spin has three components, one per direction of space. These spin components are represented by matrices Q_x = S_x, Q_y = S_y, and Q_z = S_z that don’t commute with each other. 

A couple of qubits can form the small system, analogous to the magnolia flower. The rest of the qubits form the large system, analogous to the air. I constructed a Hamiltonian—a matrix that dictates how the qubits evolve—that transfers quanta of all the spin’s components between the small system and the large. (Experts: The Heisenberg Hamiltonian transfers quanta of all the spin components between two qubits while conserving S_{x, y, z}^{\rm tot}.)

The Hamiltonian led to our first scrape: I constructed an integrable Hamiltonian, by accident. Integrable Hamiltonians can’t thermalize systems. A system thermalizes by losing information about its initial conditions, evolving to a state with an exponential form, such as e^{ - \sum_\alpha \beta_\alpha Q_\alpha } / Z. We clawed at the dirt and uncovered a solution: My Hamiltonian coupled together nearest-neighbor qubits. If the Hamiltonian coupled also next-nearest-neighbor qubits, or if the ions formed a 2D or 3D array, the Hamiltonian would be nonintegrable.

Oars

We had to scratch at every stage—while formulating the setup, preparation procedure, evolution, measurement, and prediction. But we managed; Physical Review E published our paper last month. We showed how a quantum system can evolve to the non-Abelian thermal state. Trapped ions, ultracold atoms, and quantum dots can realize our experimental proposal. We imported noncommuting conserved quantities in thermodynamics from quantum information theory to condensed matter and atomic, molecular, and optical physics.

As Grahame wrote, the Mole kept “working busily with his little paws and muttering to himself, ‘Up we go! Up we go!’ till at last, pop! his snout came out into the sunlight and he found himself rolling in the warm grass of a great meadow.”

Mole 2

1See our latest paper’s introduction for references. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.101.042117

In the hour of darkness and peril and need

I recited the poem “Paul Revere’s Ride” to myself while walking across campus last week. 

A few hours earlier, I’d cancelled the seminar that I’d been slated to cohost two days later. In a few hours, I’d cancel the rest of the seminars in the series. Undergraduates would begin vacating their dorms within a day. Labs would shut down, and postdocs would receive instructions to work from home.

I memorized “Paul Revere’s Ride” after moving to Cambridge, following tradition: As a research assistant at Lancaster University in the UK, I memorized e. e. cummings’s “anyone lived in a pretty how town.” At Caltech, I memorized “Kubla Khan.” Another home called for another poem. “Paul Revere’s Ride” brooked no competition: Campus’s red bricks run into Boston, where Revere’s story began during the 1700s. 

Henry Wadsworth Longfellow, who lived a few blocks from Harvard, composed the poem. It centers on the British assault against the American colonies, at Lexington and Concord, on the eve of the Revolutionary War. A patriot learned of the British troops’ movements one night. He communicated the information to faraway colleagues by hanging lamps in a church’s belfry. His colleagues rode throughout the night, to “spread the alarm / through every Middlesex village and farm.” The riders included Paul Revere, a Boston silversmith.

The Boston-area bricks share their color with Harvard’s crest, crimson. So do the protrusions on the coronavirus’s surface in colored pictures. 

Screen Shot 2020-03-13 at 6.40.04 PM

I couldn’t have designed a virus to suit Harvard’s website better.

The yard that I was crossing was about to “de-densify,” the red-brick buildings were about to empty, and my home was about to lock its doors. I’d watch regulations multiply, emails keep pace, and masks appear. Revere’s messenger friend, too, stood back and observed his home:

he climbed to the tower of the church,
Up the wooden stairs, with stealthy tread,
To the belfry-chamber overhead, [ . . . ]
By the trembling ladder, steep and tall,
To the highest window in the wall,
Where he paused to listen and look down
A moment on the roofs of the town,
And the moonlight flowing over all.

I commiserated also with Revere, waiting on tenterhooks for his message:

Meanwhile, impatient to mount and ride,
Booted and spurred, with a heavy stride,
On the opposite shore walked Paul Revere.
Now he patted his horse’s side,
Now gazed on the landscape far and near,
Then impetuous stamped the earth,
And turned and tightened his saddle-girth…

The lamps ended the wait, and Revere rode off. His mission carried a sense of urgency, yet led him to serenity that I hadn’t expected:

He has left the village and mounted the steep,
And beneath him, tranquil and broad and deep,
Is the Mystic, meeting the ocean tides…

The poem’s final stanza kicks. Its message carries as much relevance to the 21st century as Longfellow, writing about the 1700s during the 1800s, could have dreamed:

So through the night rode Paul Revere;
And so through the night went his cry of alarm
To every Middlesex village and farm,—
A cry of defiance, and not of fear,
A voice in the darkness, a knock at the door,
And a word that shall echo forevermore!
For, borne on the night-wind of the Past,
Through all our history, to the last,
In the hour of darkness and peril and need,
The people will waken and listen to hear
The hurrying hoof-beats of that steed,
And the midnight message of Paul Revere.

Reciting poetry clears my head. I can recite on autopilot, while processing other information or admiring my surroundings. But the poem usually wins my attention at last. The rhythm and rhyme sweep me along, narrowing my focus. Reciting “Paul Revere’s Ride” takes me 5-10 minutes. After finishing that morning, I repeated the poem, and began repeating it again, until arriving at my institute on the edge of Harvard’s campus.

Isolation can benefit theorists. Many of us need quiet to study, capture proofs, and disentangle ideas. Many of us need collaboration; but email, Skype, Google hangouts, and Zoom connect us. Many of us share and gain ideas through travel; but I can forfeit a  little car sickness, air turbulence, and waiting in lines. Many of us need results from experimentalist collaborators, but experimental results often take long to gather in the absence of pandemics. Many of us are introverts who enjoy a little self-isolation.

 

April is National Poetry Month in the United States. I often celebrate by intertwining physics with poetry in my April blog post. Next month, though, I’ll have other news to report. Besides, my walk demonstrated, we need poetry now. 

Paul Revere found tranquility on the eve of a storm. Maybe, when the night clears and doors reopen, science born of the quiet will flood journals. Aren’t we fortunate, as physicists, to lead lives steeped in a kind of poetry?

The shape of MIP* = RE

There’s a famous parable about a group of blind men encountering an elephant for the very first time. The first blind man, who had his hand on the elephant’s side, said that it was like an enormous wall. The second blind man, wrapping his arms around the elephant’s leg, exclaimed that surely it was a gigantic tree trunk. The third, feeling the elephant’s tail, declared that it must be a thick rope. Vehement disagreement ensues, but after a while the blind men eventually come to realize that, while each person was partially correct, there is much more to the elephant than initially thought.

6-blind-men-hans-1024x6541-1

Last month, Zhengfeng, Anand, Thomas, John and I posted MIP* = RE to arXiv. The paper feels very much like the elephant of the fable — and not just because of the number of pages! To a computer scientist, the paper is ostensibly about the complexity of interactive proofs. To a quantum physicist, it is talking about mathematical models of quantum entanglement. To the mathematician, there is a claimed resolution to a long-standing problem in operator algebras. Like the blind men of the parable, each are feeling a small part of a new phenomenon. How do the wall, the tree trunk, and the rope all fit together?

I’ll try to trace the outline of the elephant: it starts with a mystery in quantum complexity theory, curves through the mathematical foundations of quantum mechanics, and arrives at a deep question about operator algebras.

The rope: The complexity of nonlocal games

In 2004, computer scientists Cleve, Hoyer, Toner, and Watrous were thinking about a funny thing called nonlocal games. A nonlocal game G involves three parties: two cooperating players named Alice and Bob, and someone called the verifier. The verifier samples a pair of random questions (x,y) and sends x to Alice (who responds with answer a), and y to Bob (who responds with answer b). The verifier then uses some function D(x,y,a,b) that tells her whether the players win, based on their questions and answers.

All three parties know the rules of the game before it starts, and Alice and Bob’s goal is to maximize their probability of winning the game. The players aren’t allowed to communicate with each other during the game, so it’s a nontrivial task for them to coordinate an optimal strategy (i.e., how they should individually respond to the verifier’s questions) before the game starts.

The most famous example of a nonlocal game is the CHSH game (which has made several appearances on this blog already): in this game, the verifier sends a uniformly random bit x to Alice (who responds with a bit a) and a uniformly random bit y to Bob (who responds with a bit b). The players win if a \oplus b = x \wedge y (in other words, the sum of their answer bits is equal to the product of the input bits modulo 2).

What is Alice’s and Bob’s maximum winning probability? Well, it depends on what type of strategy they use. If they use a strategy that can be modeled by classical physics, then their winning probability cannot exceed 75\% (we call this the classical value of CHSH). On the other hand, if they use a strategy based on quantum physics, Alice and Bob can do better by sharing two quantum bits (qubits) that are entangled. During the game each player measures their own qubit (where the measurement depends on their received question) to obtain answers that win the CHSH game with probability \cos^2(\pi/8) \approx .854\ldots (we call this the quantum value of CHSH). So even though the entangled qubits don’t allow Alice and Bob to communicate with each other, entanglement gives them a way to win with higher probability! In technical terms, their responses are more correlated than what is possible classically.

The CHSH game comes from physics, and was originally formulated not as a game involving Alice and Bob, but rather as an experiment involving two spatially separated devices to test whether stronger-than-classical correlations exist in nature. These experiments are known as Bell tests, named after John Bell. In 1964, he proved that correlations from quantum entanglement cannot be explained by any “local hidden variable theory” — in other words, a classical theory of physics.1 He then showed that a Bell test, like the CHSH game, gives a simple statistical test for the presence of nonlocal correlations between separated systems. Since the 1960s, numerous Bell tests have been conducted experimentally, and the verdict is clear: nature does not behave classically.

Cleve, Hoyer, Toner and Watrous noticed that nonlocal games/Bell tests can be viewed as a kind of multiprover interactive proof. In complexity theory, interactive proofs are protocols where some provers are trying to convince a verifier of a solution to a long, difficult computation, and the verifier is trying to efficiently determine if the solution is correct. In a Bell test, one can think of the provers as instead trying to convince the verifier of a physical statement: that they possess quantum entanglement.

With the computational lens trained firmly on nonlocal games, it then becomes natural to ask about their complexity. Specifically, what is the complexity of approximating the optimal winning probability in a given nonlocal game G? In complexity-speak, this is phrased as a question about characterizing the class MIP* (pronounced “M-I-P star”). This is also a well-motivated question for an experimentalist conducting Bell tests: at the very least, they’d want to determine if (a) quantum players can do better than classical players, and (b) what can the best possible quantum strategy achieve?

Studying this question in the case of classical players led to some of the most important results in complexity theory, such as MIP = NEXP and the PCP Theorem. Indeed, the PCP Theorem says that it is NP-hard to approximate the classical value of a nonlocal game (i.e. the maximum winning probability of classical players) to within constant additive accuracy (say \pm \frac{1}{10}). Thus, assuming that P is not equal to NP, we shouldn’t expect a polynomial-time algorithm for this. However it is easy to see that there is a “brute force” algorithm for this problem: by taking exponential time to enumerate over all possible deterministic player strategies, one can exactly compute the classical value of nonlocal games.

When considering games with entangled players, however, it’s not even clear if there’s a similar “brute force” algorithm that solves this in any amount of time — forget polynomial time; even if we allow ourselves exponential, doubly-exponential, Ackermann function amount of time, we still don’t know how to solve this quantum value approximation problem. The problem is that there is no known upper bound on the amount of entanglement that is needed for players to play a nonlocal game. For example, for a given game G, does an optimal quantum strategy require one qubit, ten qubits, or 10^{10^{10}} qubits of entanglement? Without any upper bound, a “brute force” algorithm wouldn’t know how big of a quantum strategy to search for — it would keep enumerating over bigger and bigger strategies in hopes of finding a better one.

Thus approximating the quantum value may not even be solvable in principle! But could it really be uncomputable? Perhaps we just haven’t found the right mathematical tool to give an upper bound on the dimension — maybe we just need to come up with some clever variant of, say, Johnson-Lindenstrauss or some other dimension reduction technique.2

In 2008, there was promising progress towards an algorithmic solution for this problem. Two papers [DLTW, NPA] (appearing on arXiv on the same day!) showed that an algorithm based on semidefinite programming can produce a sequence of numbers that converge to something called the commuting operator value of a nonlocal game.3 If one could show that the commuting operator value and the quantum value of a nonlocal game coincide, then this would yield an algorithm for solving this approximation problem!

Asking whether this commuting operator and quantum values are the same, however, immediately brings us to the precipice of some deep mysteries in mathematical physics and operator algebras, far removed from computer science and complexity theory. This takes us to the next part of the elephant.

The tree: mathematical foundations of locality

The mystery about the quantum value versus the commuting operator value of nonlocal games has to do with two different ways of modeling Alice and Bob in quantum mechanics. As I mentioned earlier, quantum physics predicts that the maximum winning probability in, say, the CHSH game when Alice and Bob share entanglement is approximately 85%. As with any physical theory, these predictions are made using some mathematical framework — formal rules for modeling physical experiments like the CHSH game.

In a typical quantum information theory textbook, players in the CHSH game are usually modelled in the following way: Alice’s device is described a state space \mathcal{H}_A (all the possible states the device could be in), a particular state |\psi_A\rangle from \mathcal{H}_A, and a set of measurement operators \mathcal{M}_A (operations that can be performed by the device). It’s not necessary to know what these things are formally; the important feature is that these three things are enough to make any prediction about Alice’s device — when treated in isolation, at least. Similarly, Bob’s device can be described using its own state space \mathcal{H}_B, state |\psi_B\rangle, and measurement operators \mathcal{M}_B.

In the CHSH game though, one wants to make predictions about Alice’s and Bob’s devices together. Here the textbooks say that Alice and Bob are jointly described by the tensor product formalism, which is a natural mathematical way of “putting separate spaces together”. Their state space is denoted by \mathcal{H}_A \otimes \mathcal{H}_B. The joint state |\psi_{AB}\rangle describing the devices comes from this tensor product space. When Alice and Bob independently make their local measurements, this is described by a measurement operator from the tensor product of operators from \mathcal{M}_A and \mathcal{M}_B. The strange correlations of quantum mechanics arise when their joint state |\psi_{AB}\rangle is entangled, i.e. it cannot be written as a well-defined state on Alice’s side combined with a well-defined state on Bob’s side (even though the state space itself is two independent spaces combined together!)

The tensor product model works well; it satisfies natural properties you’d want from the CHSH experiment, such as the constraint that Alice and Bob can’t instantaneously signal to each other. Furthermore, predictions made in this model match up very accurately with experimental results!

This is the not the whole story, though. The tensor product formalism works very well in non-relativistic quantum mechanics, where things move slowly and energies are low. To describe more extreme physical scenarios — like when particles are being smashed together at near-light speeds in the Large Hadron Collider — physicists turn to the more powerful quantum field theory. However, the notion of spatiotemporal separation in relativistic settings gets especially tricky. In particular, when trying to describe quantum mechanical systems, it is no longer evident how to assign Alice and Bob their own independent state spaces, and thus it’s not clear how to put relativistic Alice and Bob in the tensor product framework!

In quantum field theory, locality is instead described using the commuting operator model. Instead of assigning Alice and Bob their own individual state spaces and then tensoring them together to get a combined space, the commuting operator model stipulates that there is just a single monolithic space \mathcal{H} for both Alice and Bob. Their joint state is described using a vector |\psi\rangle from \mathcal{H}, and Alice and Bob’s measurement operators both act on \mathcal{H}. The constraint that they can’t communicate is captured by the fact that Alice’s measurement operators commute with Bob’s operators. In other words, the order in which the players perform their measurements on the system does not matter: Alice measuring before Bob, or Bob measuring before Alice, both yield the same statistical outcomes. Locality is enforced through commutativity.

The commuting operator framework contains the tensor product framework as a special case4, so it’s more general. Could the commuting operator model allow for correlations that can’t be captured by the tensor product model, even approximately56? This question is known as Tsirelson’s problem, named after the late mathematician Boris Tsirelson.

There is a simple but useful way to phrase this question using nonlocal games. What we call the “quantum value” of a nonlocal game G (denoted by \omega^* (G)) really refers to the supremum of success probabilities over tensor product strategies for Alice and Bob. If they use strategies from the more general commuting operator model, then we call their maximum success probability the commuting operator value of G (denoted by \omega^{co}(G)). Since tensor product strategies are a special case of commuting operator strategies, we have the relation \omega^* (G) \leq \omega^{co}(G) for all nonlocal games G.

Could there be a nonlocal game G whose tensor product value is different from its commuting operator value? With tongue-in-cheek: is there a game G that Alice and Bob could succeed at better if they were using quantum entanglement at near-light speeds? It is difficult to find even a plausible candidate game for which the quantum and commuting operator values may differ. The CHSH game, for example, has the same quantum and commuting operator value; this was proved by Tsirelson.

If the tensor product and the commuting operator models are the same (i.e., the “positive” resolution of Tsirelson’s problem), then as I mentioned earlier, this has unexpected ramifications: there would be an algorithm for approximating the quantum value of nonlocal games.

How does this algorithm work? It comes in two parts: a procedure to search from below, and one to search from above. The “search from below” algorithm computes a sequence of numbers \alpha_1,\alpha_2,\alpha_3,\ldots where \alpha_d is (approximately) the best winning probability when Alice and Bob use a d-qubit tensor product strategy. For fixed d, the number \alpha_d can be computed by enumerating over (a discretization of) the space of all possible d-qubit strategies. This takes a doubly-exponential amount of time in d — but at least this is still a finite time! This naive “brute force” algorithm will slowly plod along, computing a sequence of better and better winning probabilities. We’re guaranteed that in the limit as d goes to infinity, the sequence \{ \alpha_d\} converges to the quantum value \omega^* (G). Of course the issue is that the “search from below” procedure never knows how close it is to the true quantum value.

This is where the “search from above” comes in. This is an algorithm that computes a different sequence of numbers \beta_1,\beta_2,\beta_3,\ldots where each \beta_d is an upper bound on the commuting operator value \omega^{co}(G), and furthermore as d goes to infinity, \beta_d eventually converges to \omega^{co}(G). Furthermore, each \beta_d can be computed by a technique known as semidefinite optimization; this was shown by the two papers I mentioned.

Let’s put the pieces together. If the quantum and commuting operator values of a game G coincide (i.e. \omega^* (G) = \omega^{co}(G)), then we can run the “search from below” and “search from above” procedures in parallel, interleaving the computation of the \{\alpha_d\} and \{ \beta_d\}. Since both are guaranteed to converge to the quantum value, at some point the upper bound \beta_d will come within some \epsilon to the lower bound \alpha_d, and thus we would have homed in on (an approximation of) \omega^* (G). There we have it: an algorithm to approximate the quantum value of games.

All that remains to do, surely, is to solve Tsirelson’s problem in the affirmative (that commuting operator correlations can be approximated by tensor product correlations), and then we could put this pesky question about the quantum value to rest. Right?

The wall: Connes’ embedding problem

At the end of the 1920s, polymath extraordinaire John von Neumann formulated the first rigorous mathematical framework for the recently developed quantum mechanics. This framework, now familiar to physicists and quantum information theorists everywhere, posits that quantum states are vectors in a Hilbert space, and measurements are linear operators acting on those spaces. It didn’t take long for von Neumann to realize that there was a much deeper theory of operators on Hilbert spaces waiting to be discovered. With Francis Murray, in the 1930s he started to develop a theory of “rings of operators” — today these are called von Neumann algebras.

The theory of operator algebras has since flourished into a rich and beautiful area of mathematics. It remains inseparable from mathematical physics, but has established deep connections with subjects such as knot theory and group theory. One of the most important goals in operator algebras has been to provide a classification of von Neumann algebras. In their series of papers on the subject, Murray and von Neumann first showed that classifying von Neumann algebras reduces to understanding their factors, the atoms out of which all von Neumann algebras are built. Then, they showed that factors of von Neumann algebras come in one of three species: type I, type II, and type III. Type I factors were completely classified by Murray and von Neumann, and they made much progress on characterizing certain type II factors. However progress stalled until the 1970s, when Alain Connes provided a classification of type III factors (work for which he would later receive the Fields Medal). In the same 1976 classification paper, Connes makes a casual remark about something called type II_1 factors7:

We now construct an embedding of N into \mathcal{R}. Apparently such an embedding ought to exist for all II_1 factors.

This line, written in almost a throwaway manner, eventually came to be called “Connes’ embedding problem”: does every separable II_1 factor embed into an ultrapower of the hyperfinite II_1 factor? It seems that Connes surmises that it does (and thus this is also called “Connes’ embedding conjecture“). Since 1976, this problem has grown into a central question of operator algebras, with numerous equivalent formulations and consequences across mathematics.

In 2010, two papers (again appearing on the arXiv on the same day!) showed that the reach of Connes’ embedding conjecture extends back to the foundations of quantum mechanics. If Connes’ embedding problem has a positive answer (i.e. an embedding exists), then Tsirelson’s problem (i.e. whether commuting operator can be approximated by tensor product correlations) also has a positive answer! Later it was shown by Ozawa that Connes’ embedding problem is in fact equivalent to Tsirelson’s problem.

Remember that our approach to compute the value of nonlocal games hinged on obtaining a positive answer to Tsirelson’s problem. The sequence of papers [NPA, DLTW, Fritz, JNPPSW] together show that resolving — one way or another — whether this search-from-below, search-from-above algorithm works would essentially settle Connes’ embedding conjecture. What started as a funny question at the periphery of computer science and quantum information theory has morphed into an attack on one of the central problems in operator algebras.

MIP* = RE

We’ve now ended back where we started: the complexity of nonlocal games. Let’s take a step back and try to make sense of the elephant.

Even to a complexity theorist, “MIP* = RE” may appear esoteric. The complexity classes MIP* and RE refer to a bewildering grabbag of concepts: there’s Alice, Bob, Turing machines, verifiers, interactive proofs, quantum entanglement. What is the meaning of the equality of these two classes?

First, it says that the Halting problem has an interactive proof involving quantum entangled provers. In the Halting problem, you want to decide whether a Turing machine M, if you started running it, would eventually terminate with a well-defined answer, or if it would get stuck in an infinite loop. Alan Turing showed that this problem is undecidable: there is no algorithm that can solve this problem in general. Loosely speaking, the best thing you can do is to just flick on the power switch to M, and wait to see if it eventually stops. If M gets stuck in an infinite loop — well, you’re going to be waiting forever.

MIP* = RE shows with the help of all-powerful Alice and Bob, a time-limited verifier can run an interactive proof to “shortcut” the waiting. Given the Turing machine M‘s description (its “source code”), the verifier can efficiently compute a description of a nonlocal game G_M whose behavior reflects that of M. If M does eventually halt (which could happen after a million years), then there is a strategy for Alice and Bob that causes the verifier to accept with probability 1. In other words, \omega^* (G_M) = 1. If M gets stuck in an infinite loop, then no matter what strategy Alice and Bob use, the verifier always rejects with high probability, so \omega^* (G_M) is close to 0.

By playing this nonlocal game, the verifier can obtain statistical evidence that M is a Turing machine that eventually terminates. If the verifier plays G_M and the provers win, then the verifier should believe that it is likely that M halts. If they lose, then the verifier concludes there isn’t enough evidence that M halts8. The verifier never actually runs M in this game; she has offloaded the task to Alice and Bob, who we can assume are computational gods capable of performing million-year-long computations instantly. For them, the challenge is instead to convince the verifier that if she were to wait millions of years, she would witness the termination of M. Incredibly, the amount of work put in by the verifier in the interactive proof is independent of the time it takes for M to halt!

The fact that the Halting problem has an interactive proof seems borderline absurd: if the Halting problem is unsolvable, why should we expect it to be verifiable? Although complexity theory has taught us that there can be a large gap between the complexity of verification versus search, it has always been a difference of efficiency: if solutions to a problem can be efficiently verified, then solutions can also be found (albeit at drastically higher computational cost). MIP* = RE shows that, with quantum entanglement, there can be a chasm of computability between verifying solutions and finding them.

Now let’s turn to the non-complexity consequences of MIP* = RE. The fact that we can encode the Halting problem into nonlocal games also immediately tells us that there is no algorithm whatsoever to approximate the quantum value. Suppose there was an algorithm that could approximate \omega^* (G). Then, using the transformation from Turing machines to nonlocal games mentioned above, we could use this algorithm to solve the Halting problem, which is impossible.

Now the dominoes start to fall. This means that, in particular, the proposed “search-from-below”/”search-from-above” algorithm cannot succeed in approximating \omega^* (G). There must be a game G, then, for which the quantum value is different from the commuting operator value. But this implies Tsirelson’s problem has a negative answer, and therefore Connes’ embedding conjecture is false.

We’ve only sketched the barest of outlines of this elephant, and yet it is quite challenging to hold it in the mind’s eye all at once9. This story is intertwined with some of the most fundamental developments in the past century: modern quantum mechanics, operator algebras, and computability theory were birthed in the 1930s. Einstein, Podolsky and Rosen wrote their landmark paper questioning the nature of quantum entanglement in 1935, and John Bell discovered his famous test and inequality in 1964. Connes’ formulated his conjecture in the ’70s, Tsirelson made his contributions to the foundations of quantum mechanics in the ’80s, and about the same time computer scientists were inventing the theory of interactive proofs and probabilistically checkable proofs (PCPs).

We haven’t said anything about the proof of MIP* = RE yet (this may be the subject of future blog posts), but it is undeniably a product of complexity theory. The language of interactive proofs and Turing machines is not just convenient but necessary: at its heart MIP* = RE is the classical PCP Theorem, with the help of quantum entanglement, recursed to infinity.

What is going on in this proof? What parts of it are fundamental, and which parts are unnecessary? What is the core of it that relates to Connes’ embedding conjecture? Are there other consequences of this uncomputability result? These are questions to be explored in the coming days and months, and the answers we find will be fascinating.

Acknowledgments. Thanks to William Slofstra and Thomas Vidick for helpful feedback on this post.


  1. This is why quantum correlations are called “nonlocal”, and why we call the CHSH game a “nonlocal game”: it is a test for nonlocal behavior. 
  2. A reasonable hope would be that, for every nonlocal game G, there is a generic upper bound on the number of qubits needed to approximate the optimal quantum strategy (e.g., a game G with Q possible questions and A possible answers would require at most, say, 2^{O(Q \cdot A)} qubits to play optimally). 
  3. In those papers, they called it the field theoretic value
  4. The space \mathcal{H} can be broken down into the tensor product \mathcal{H}_A \otimes \mathcal{H}_B, and Alice’s measurements only act on the \mathcal{H}_A space and Bob’s measurements only act on the \mathcal{H}_B space. In this case, Alice’s measurements clearly commute with Bob’s. 
  5. In a breakthrough work in 2017, Slofstra showed that the tensor product framework is not exactly the same as the commuting operator framework; he shows that there is a nonlocal game G where players using commuting operator strategies can win with probability 1, but when they use a tensor-product strategy they can only win with probability strictly less than 1. However the perfect commuting operator strategy can be approximated by tensor-product strategies arbitrarily well, so the quantum values and the commuting operator values of G are the same. 
  6. The commuting operator model is motivated by attempts to develop a rigorous mathematical framework for quantum field theory from first principles (see, for example algebraic quantum field theory (AQFT)). In the “vanilla” version of AQFT, tensor product decompositions between casually independent systems do not exist a priori, but mathematical physicists often consider AQFTs augmented with an additional “split property”, which does imply tensor product decompositions. Thus in such AQFTs, Tsirelson’s problem has an affirmative answer. 
  7. Type II_1 is pronounced “type two one”. 
  8. This is not the same as evidence that M loops forever! 
  9. At least, speaking for myself. 

Sense, sensibility, and superconductors

Jonathan Monroe disagreed with his PhD supervisor—with respect. They needed to measure a superconducting qubit, a tiny circuit in which current can flow forever. The qubit emits light, which carries information about the qubit’s state. Jonathan and Kater intensify the light using an amplifier. They’d fabricated many amplifiers, but none had worked. Jonathan suggested changing their strategy—with a politeness to which Emily Post couldn’t have objected. Jonathan’s supervisor, Kater Murch, suggested repeating the protocol they’d performed many times.

“That’s the definition of insanity,” Kater admitted, “but I think experiment needs to involve some of that.”

I watched the exchange via Skype, with more interest than I’d have watched the Oscars with. Someday, I hope, I’ll be able to weigh in on such a debate, despite working as a theorist. Someday, I’ll have partnered with enough experimentalists to develop insight.

I’m partnering with Jonathan and Kater on an experiment that coauthors and I proposed in a paper blogged about here. The experiment centers on an uncertainty relation, an inequality of the sort immortalized by Werner Heisenberg in 1927. Uncertainty relations imply that, if you measure a quantum particle’s position, the particle’s momentum ceases to have a well-defined value. If you measure the momentum, the particle ceases to have a well-defined position. Our uncertainty relation involves weak measurements. Weakly measuring a particle’s position doesn’t disturb the momentum much and vice versa. We can interpret the uncertainty in information-processing terms, because we cast the inequality in terms of entropies. Entropies, described here, are functions that quantify how efficiently we can process information, such as by compressing data. Jonathan and Kater are checking our inequality, and exploring its implications, with a superconducting qubit.

With chip

I had too little experience to side with Jonathan or with Kater. So I watched, and I contemplated how their opinions would sound if expressed about theory. Do I try one strategy again and again, hoping to change my results without changing my approach? 

At the Perimeter Institute for Theoretical Physics, Masters students had to swallow half-a-year of course material in weeks. I questioned whether I’d ever understand some of the material. But some of that material resurfaced during my PhD. Again, I attended lectures about Einstein’s theory of general relativity. Again, I worked problems about observers in free-fall. Again, I calculated covariant derivatives. The material sank in. I decided never to question, again, whether I could understand a concept. I might not understand a concept today, or tomorrow, or next week. But if I dedicate enough time and effort, I chose to believe, I’ll learn.

My decision rested on experience and on classes, taught by educational psychologists, that I’d taken in college. I’d studied how brains change during learning and how breaks enhance the changes. Sense, I thought, underlay my decision—though expecting outcomes to change, while strategies remain static, sounds insane.

Old cover

Does sense underlie Kater’s suggestion, likened to insanity, to keep fabricating amplifiers as before? He’s expressed cynicism many times during our collaboration: Experiment needs to involve some insanity. The experiment probably won’t work for a long time. Plenty more things will likely break. 

Jonathan and I agree with him. Experiments have a reputation for breaking, and Kater has a reputation for knowing experiments. Yet Jonathan—with professionalism and politeness—remains optimistic that other methods will prevail, that we’ll meet our goals early. I hope that Jonathan remains optimistic, and I fancy that Kater hopes, too. He prophesies gloom with a quarter of a smile, and his record speaks against him: A few months ago, I met a theorist who’d collaborated with Kater years before. The theorist marveled at the speed with which Kater had operated. A theorist would propose an experiment, and boom—the proposal would work.

Sea monsters

Perhaps luck smiled upon the implementation. But luck dovetails with the sense that underlies Kater’s opinion: Experiments involve factors that you can’t control. Implement a protocol once, and it might fail because the temperature has risen too high. Implement the protocol again, and it might fail because a truck drove by your building, vibrating the tabletop. Implement the protocol again, and it might fail because you bumped into a knob. Implement the protocol a fourth time, and it might succeed. If you repeat a protocol many times, your environment might change, changing your results.

Sense underlies also Jonathan’s objections to Kater’s opinions. We boost our chances of succeeding if we keep trying. We derive energy to keep trying from creativity and optimism. So rebelling against our PhD supervisors’ sense is sensible. I wondered, watching the Skype conversation, whether Kater the student had objected to prophesies of doom as Jonathan did. Kater exudes the soberness of a tenured professor but the irreverence of a Californian who wears his hair slightly long and who tattooed his wedding band on. Science thrives on the soberness and the irreverence.

Green cover

Who won Jonathan and Kater’s argument? Both, I think. Last week, they reported having fabricated amplifiers that work. The lab followed a protocol similar to their old one, but with more conscientiousness. 

I’m looking forward to watching who wins the debate about how long the rest of the experiment takes. Either way, check out Jonathan’s talk about our experiment if you attend the American Physical Society’s March Meeting. Jonathan will speak on Thursday, March 5, at 12:03, in room 106. Also, keep an eye out for our paper—which will debut once Jonathan coaxes the amplifier into synching with his qubit.

Interaction + Entanglement = Efficient Proofs of Halting

A couple weeks ago my co-authors Zhengfeng Ji (UTS Sydney), Heny Yuen (University of Toronto) and Anand Natarajan and John Wright (both at Caltech’s IQIM, with John soon moving to UT Austin) & I posted a manuscript on the arXiv preprint server entitled

MIP*=RE

The magic of the single-letter formula quickly made its effect, and our posting received some attention on the blogosphere (see links below). Within computer science, complexity theory is at an advantage in its ability to capture powerful statements in few letters: who has not head of P, NP, and, for readers of this blog, BQP and QMA? (In contrast, I am under no illusion that my vague attempt at a more descriptive title has, by the time you reach this line, all but vanished from the reader’s memory.)

Even accounting for this popularity however, it is a safe bet that fewer of our readers have heard of MIP* or RE. Yet we are promised that the above-stated equality has great consequences for physics (“Tsirelson’s problem” in the study of nonlocality) and mathematics (“Connes’ embedding problem” in the theory of von Neumann algebras). How so — how can complexity-theoretic alphabet soup have any consequence for, on the one hand, physical reality, and on the other, abstract mathematics?

The goal of this post and the next one is to help the interested reader grasp the significance of interactive proofs (that lie between the symbols MIP*) and undecidability (that lies behind RE) for quantum mechanics.

The bulk of the present post is an almost identical copy of a post I wrote for my personal blog. To avoid accusations of self-plagiarism, I will substantiate it with a little picture and a story, see below. The post gives a very personal take on the research that led to the aforementioned result. In the next post, my co-author Henry Yuen has offered to give a more scientific introduction to the result and its significance.

Before proceeding, it is important to make it clear that the research described in this post and the next has not been refereed or thoroughly vetted by the community. This process will take place over the coming months, and we should wait until it is completed before placing too much weight on the results. As an author, I am proud of my work; yet I am aware that there is due process to be made before the claims can be officialised. As such, these posts only represent my opinion (and Henry’s) and not necessarily that of the wider scientific community.

For more popular introductions to our result, see the blog posts of Scott Aaronson, Dick Lipton, and Gil Kalai and reporting by Davide Castelvecchi for Nature and Emily Conover for Science.

Now for the personal post…and the promised picture. IMG_8074Isn’t it beautiful? The design is courtesy of Tony Metger and Alexandru Gheorghiu, the first a visiting student and the second a postdoctoral scholar at Caltech’s IQIM. While Tony and Andru came up with the idea, the execution is courtesy of the bakery store employee, who graciously implemented the custom design (apparently writing equations on top of cakes is not  common enough to be part of the standard offerings, so they had to go for the custom option). Although it is unclear if the executioner grasped the full depth of the signs they were copying, note how perfect the execution: not a single letter is out of place! Thanks to Tony, Andru, and the anonymous chef for the tasty souvenir.

Now for the story. In an earlier post on my personal research blog, I had reported on the beautiful recent result by Natarajan and Wright showing the astounding power of multi-prover interactive proofs with quantum provers sharing entanglement: in letters, \text{NEEXP} \subseteq \text{MIP}^\star. In the remainder of this post I will describe our follow-up work with Ji, Natarajan, Wright, and Yuen. In this post I will tell the story from a personal point of view, with all the caveats that this implies: the “hard science” will be limited (but there could be a hint as to how “science”, to use a big word, “progresses”, to use an ill-defined one; see also the upcoming post by Henry Yuen for more), the story is far too long, and it might be mostly of interest to me only. It’s a one-sided story, but that has to be. (In particular below I may at times attribute credit in the form “X had this idea”. This is my recollection only, and it is likely to be inaccurate. Certainly I am ignoring a lot of important threads.) I wrote this because I enjoyed recollecting some of the best moments in the story just as much as some the hardest; it is fun to look back and find meanings in ideas that initially appeared disconnected. Think of it as an example of how different lines of work can come together in unexpected ways; a case for open-ended research. It’s also an antidote against despair that I am preparing for myself: whenever I feel I’ve been stuck on a project for far too long, I’ll come back to this post and ask myself if it’s been 14 years yet — if not, then press on.

It likely comes as a surprise to me only that I am no longer fresh out of the cradle. My academic life started in earnest some 14 years ago, when in the Spring of 2006 I completed my Masters thesis in Computer Science under the supervision of Julia Kempe, at Orsay in France. I had met Julia the previous term: her class on quantum computing was, by far, the best-taught and most exciting course in the Masters program I was attending, and she had gotten me instantly hooked. Julia agreed to supervise my thesis, and suggested that I look into some interesting recent result by Stephanie Wehner that linked the study of entanglement and nonlocality in quantum mechanics to complexity-theoretic questions about interactive proof systems (specifically, this was Stephanie’s paper showing that \text{XOR-MIP}^\star \subseteq \text{QIP}(2)).

At the time the topic was very new. It had been initiated the previous year with a beautiful paper by Cleve et al. (that I have recommended to many a student since!) It was a perfect fit for me: the mathematical aspects of complexity theory and quantum computing connected to my undergraduate background, while the relative concreteness of quantum mechanics (it is a physical theory after all) spoke to my desire for real-world connection (not “impact” or even “application” — just “connection”). Once I got myself up to speed in the area (which consisted of three papers: the two I already mentioned, together with a paper by Kobayashi and Matsumoto where they studied interactive proofs with quantum messages), Julia suggested looking into the “entangled-prover” class \text{MIP}^\star introduced in the aforementioned paper by Cleve et al. Nothing was known about this class! Nothing besides the trivial inclusion of single-prover interactive proofs, IP, and the containment in…ALL, the trivial class that contains all languages.

Yet the characterization MIP=NEXP of its classical counterpart by Babai et al. in the 1990s had led to one of the most productive lines of work in complexity of the past few decades, through the PCP theorem and its use from hardness of approximation to efficient cryptographic schemes. Surely, studying \text{MIP}^\star had to be a productive direction? In spite of its well-established connection to classical complexity theory, via the formalism of interactive proofs, this was a real gamble. The study of entanglement from the complexity-theoretic perspective was entirely new, and bound to be fraught with difficulty; very few results were available and the existing lines of works, from the foundations of non-locality to more recent endeavors in device-independent cryptography, provided little other starting point than strong evidence that even the simplest examples came with many unanswered questions. But my mentor was fearless, and far from a novice in terms of defraying new areas, having done pioneering work in areas ranging from quantum random walks to Hamiltonian complexity through adiabatic computation. Surely this would lead to something?

It certainly did. More sleepless nights than papers, clearly, but then the opposite would only indicate dullness. Julia’s question led to far more unexpected consequences than I, or I believe she, could have imagined at the time. I am writing this post to celebrate, in a personal way, the latest step in 15 years of research by dozens of researchers: today my co-authors and I uploaded to the quant-ph arXiv what we consider a complete characterization of the power of entangled-prover interactive proof systems by proving the equality \text{MIP}^\star = \text{RE}, the class of all recursively enumerable languages (a complete problem for RE is the halting problem). Without going too much into the result itself (if you’re interested, look for an upcoming post here that goes into the proof a bit more), and since this is a more personal post, I will continue on with some personal thoughts about the path that got us there.

When Julia & I started working on the question, our main source of inspiration were the results by Cleve et al. showing that the non-local correlations of entanglement had interesting consequences when seen through the lens of interactive proof systems in complexity theory. Since the EPR paper, a lot of work in understanding entanglement had already been accomplished in the Physics community, most notably by Mermin, Peres, Bell, and more recently the works in device-independent quantum cryptography by Acin, Pironio, Scarani and many others, stimulated by Ekert’s proposal for quantum key distribution and Mayers and Yao’s idea for “device-independent cryptography”. By then we certainly knew that “spooky action-at-a-distance” did not entail any faster-than-light communication, and indeed was not really “action-at-a-distance” in the first place but merely “correlation-at-a-distance”. What Cleve et al. recognized is that these “spooky correlations-at-a-distance” were sufficiently special so as to not only give numerically different values in “Bell inequalities”, the tool invented by Bell to evidence non-locality in quantum mechanics, but also have some potentially profound consequences in complexity theory.

In particular, examples such as the “Magic Square game” demonstrated that enough correlation could be gained from entanglement so as to defeat basic proof systems whose soundness relied only on the absence of communication between the provers, an assumption that until then had been wrongly equated with the assumption that any computation performed by the provers could be modeled entirely locally. I think that the fallacy of this implicit assumption came as a surprise to complexity theorists, who may still not have entirely internalized it. Yet the perfect quantum strategy for the Magic Square game provides a very concrete “counter-example” to the soundness of the “clause-vs-variable” game for 3SAT. Indeed this game, a reformulation by Aravind and Cleve-Mermin of a Bell Inequality discovered by Mermin and Peres in 1990, can be easily re-framed as a 3SAT system of equations that is not satisfiable, and yet is such that the associated two-player clause-vs-variable game has a perfect quantum strategy. It is this observation, made in the paper by Cleve et al., that gave the first strong hint that the use of entanglement in interactive proof systems could make many classical results in the area go awry.

By importing the study of non-locality into complexity theory Cleve et al. immediately brought it into the realm of asymptotic analysis. Complexity theorists don’t study fixed objects, they study families of objects that tend to have a uniform underlying structure and whose interesting properties manifest themselves “in the limit”. As a result of this new perspective focus shifted from the study of single games or correlations to infinite families thereof. Some of the early successes of this translation include the “unbounded violations” that arose from translating asymptotic separations in communication complexity to the language of Bell inequalities and correlations (e.g. this paper). These early successes attracted the attention of some physicists working in foundations as well as some mathematical physicists, leading to a productive exploration that combined tools from quantum information, functional analysis and complexity theory.

The initial observations made by Cleve et al. had pointed to \text{MIP}^\star as a possibly interesting complexity class to study. Rather amazingly, nothing was known about it! They had shown that under strong restrictions on the verifier’s predicate (it should be an XOR of two answer bits), a collapse took place: by the work of Hastad, XOR-MIP equals NEXP, but \text{MIP}^\star is included in EXP. This seemed very fortuitous (the inclusion is proved via a connection with semidefinite programming that seems tied to the structure of XOR-MIP protocols): could entanglement induce a collapse of the entire, unrestricted class? We thought (at this point mostly Julia thought, because I had no clue) that this ought not to be the case, and so we set ourselves to show that the equality \text{MIP}^\star=\text{NEXP}, that would directly parallel Babai et al.’s characterization MIP=NEXP, holds. We tried to show this by introducing techniques to “immunize” games against entanglement: modify an interactive proof system so that its structure makes it “resistant” to the kind of “nonlocal powers” that can be used to defeat the clause-vs-variable game (witness the Magic Square). This was partially successful, and led to one of the papers I am most proud of — I am proud of it because I think it introduced elementary techniques (such as the use of the Cauchy-Schwarz inequality — inside joke — more seriously, basic things such as “prover-switching”, “commutation tests”, etc.) that are now routine manipulations in the area. The paper was a hard sell! It’s good to remember the first rejections we received. They were not unjustified: the main point of criticism was that we were only able to establish a hardness result for exponentially small completeness-soundness gap. A result for such a small gap in the classical setting follows directly from a very elementary analysis based on the Cook-Levin theorem. So then why did we have to write so many pages (and so many applications of Cauchy-Schwarz!) to arrive at basically the same result (with a ^\star)?

Eventually we got lucky and the paper was accepted to a conference. But the real problem, of establishing any non-trivial lower bound on the class \text{MIP}^\star with constant (or, in the absence of any parallel repetition theorem, inverse-polynomial) completeness-soundness gap, remained. By that time I had transitioned from a Masters student in France to a graduate student in Berkeley, and the problem (pre-)occupied me during some of the most difficult years of my Ph.D. I fully remember spending my first year entirely thinking about this (oh and sure, that systems class I had to pass to satisfy the Berkeley requirements), and then my second year — yet, getting nowhere. (I checked the arXiv to make sure I’m not making this up: two full years, no posts.) I am forever grateful to my fellow student Anindya De for having taken me out of the cycle of torture by knocking on my door with one of the most interesting questions I have studied, that led me into quantum cryptography and quickly resulted in an enjoyable paper. It was good to feel productive again! (Though the paper had fun reactions as well: after putting it on the arXiv we quickly heard from experts in the area that we had solved an irrelevant problem, and that we better learn about information theory — which we did, eventually leading to another paper, etc.) The project had distracted me and I set interactive proofs aside; clearly, I was stuck.

About a year later I visited IQC in Waterloo. I don’t remember in what context the visit took place. What I do remember is a meeting in the office of Tsuyoshi Ito, at the time a postdoctoral scholar at IQC. Tsuyoshi asked me to explain our result with Julia. He then asked a very pointed question: the bedrock for the classical analysis of interactive proof systems is the “linearity test” of Blum-Luby-Rubinfeld (BLR). Is there any sense in which we could devise a quantum version of that test?

What a question! This was great. At first it seemed fruitless: in what sense could one argue that quantum provers apply a “linear function”? Sure, quantum mechanics is linear, but that is besides the point. The linearity is a property of the prover’s answers as a function of their question. So what to make of the quantum state, the inherent randomness, etc.?

It took us a few months to figure it out. Once we got there however, the answer was relatively simple — the prover should be making a question-independent measurement that returns a linear function that it applies to its question in order to obtain the answer returned to the verifier — and it opened the path to our subsequent paper showing that the inclusion of NEXP in \text{MIP}^\star indeed holds. Tsuyoshi’s question about linearity testing had allowed us to make the connection with PCP techniques; from there to MIP=NEXP there was only one step to make, which is to analyze multi-linearity testing. That step was suggested by my Ph.D. advisor, Umesh Vazirani, who was well aware of the many pathways towards the classical PCP theorem, since the theorem had been obtained in great part by his former student Sanjeev Arora. It took a lot of technical work, yet conceptually a single question from my co-author had sufficed to take me out of a 3-year slumber.

This was in 2012, and I thought we were done. For some reason the converse inclusion, of \text{MIP}^\star in NEXP, seemed to resist our efforts, but surely it couldn’t resist much longer. Navascues et al. had introduced a hierarchy of semidefinite programs that seemed to give the right answer (technically they could only show convergence to a relaxation, the commuting value, but that seemed like a technicality; in particular, the values coincide when restricted to finite-dimensional strategies, which is all we computer scientists cared about). There were no convergence bounds on the hierarchy, yet at the same time commutative SDP hierarchies were being used to obtain very strong results in combinatorial optimization, and it seemed like it would only be a matter of time before someone came up with an analysis of the quantum case. (I had been trying to solve a related “dimension reduction problem” with Oded Regev for years, and we were making no progress; yet it seemed someone ought to!)

In Spring 2014 during an open questions session at a workshop at the Simons Institute in Berkeley Dorit Aharonov suggested that I ask the question of the possible inclusion of QMA-EXP, the exponential-sized-proofs analogue of QMA, in \text{MIP}^\star. A stronger result than the inclusion of NEXP (under assumptions), wouldn’t it be a more natural “fully quantum” analogue of MIP=NEXP? Dorit’s suggestion was motivated by research on the “quantum PCP theorem”, that aims to establish similar hardness results in the realm of the local Hamiltonian problem; see e.g. this post for the connection. I had no idea how to approach the question — I also didn’t really believe the answer could be positive — but what can you do, if Dorit asks you something… So I reluctantly went to the board and asked the question. Joe Fitzsimons was in the audience, and he immediately picked it up! Joe had the fantastic ideas of using quantum error-correction, or more specifically secret-sharing, to distribute a quantum proof among the provers. His enthusiasm overcame my skepticism, and we eventually showed the desired inclusion. Maybe \text{MIP}^\star was bigger than \text{NEXP} after all.

Our result, however, had a similar deficiency as the one with Julia, in that the completeness-soundness gap was exponentially small. Obtaining a result with a constant gap took 3 years of couple more years of work and the fantastic energy and insights of a Ph.D. student at MIT, Anand Natarajan. Anand is the first person I know of to have had the courage to dive into the most technical aspects of the analysis of the aforementioned results, while also bringing in the insights of a “true quantum information theorist” that were supported by Anand’s background in Physics and upbringing in the group of Aram Harrow at MIT. (In contrast I think of myself more as a “raw” mathematician; I don’t really understand quantum states other than as positive-semidefinite matrices…not that I understand math either of course; I suppose I’m some kind of a half-baked mish-mash.) Anand had many ideas but one of the most beautiful ones led to what he poetically called the “Pauli braiding test”, a “truly quantum” analogue of the BLR linearity test that amounts to doing two linearity tests in conjugate bases and piecing the results together into a robust test for {n}-qubit entanglement (I wrote about our work on this here).

At approximately the same time, Zhengfeng Ji had another wonderful idea that was in some sense orthogonal to our work. (My interpretation of) Zhengfeng’s idea is that one can see an interactive proof system as a computation (verifier-prover-verifier) and use Kitaev’s circuit-to-Hamiltonian construction to transform the entire computation into a “quantum CSP” (in the same sense that the local Hamiltonian problem is a quantum analogue of classical constraint satisfaction problems (CSP)) that could then itself be verified by a quantum multi-prover interactive proof system…with exponential gains in efficiency! Zhengfeng’s result implied an exponential improvement in complexity compared to the result by Julia and myself, showing inclusion of NEEXP, instead of NEXP, in \text{MIP}^\star. However, Zhengfeng’s technique suffered from the same exponentially small completeness-soundness gap as we had, so that the best lower bound on \text{MIP}^\star per se remained NEXP.

Both works led to follow-ups. With Natarajan we promoted the Pauli braiding test into a “quantum low-degree test” that allowed us to show the inclusion of QMA-EXP into \text{MIP}^\star, with constant gap, thereby finally answering the question posed by Aharonov 4 years after it was asked. (I should also say that by then all results on \text{MIP}^\star started relying on a sequence of parallel repetition results shown by Bavarian, Yuen, and others; I am skipping this part.) In parallel, with Ji, Fitzsimons, and Yuen we showed that Ji’s compression technique could be “iterated” an arbitrary number of times. In fact, by going back to “first principles” and representing verifiers uniformly as Turing machines we realized that the compression technique could be used iteratively to (up to small caveats) give a new proof of the fact (first shown by Slofstra using an embedding theorem for finitely presented group) that the zero-gap version of \text{MIP}^\star contains the halting problem. In particular, the entangled value is uncomputable! This was not the first time that uncomputability crops in to a natural problem in quantum computing (e.g. the spectral gap paper), yet it still surprises when it shows up. Uncomputable! How can anything be uncomputable!

As we were wrapping up our paper Henry Yuen realized that our “iterated compression of interactive proof systems” was likely optimal, in the following sense. Even a mild improvement of the technique, in the form of a slower closing of the completeness-soundness gap through compression, would yield a much stronger result: undecidability of the constant-gap class \text{MIP}^\star. It was already known by work of Navascues et al., Fritz, and others, that such a result would have, if not surprising, certainly consequences that seemed like they would be taking us out of our depth. In particular, undecidability of any language in \text{MIP}^\star would imply a negative resolution to a series of equivalent conjectures in functional analysis, from Tsirelson’s problem to Connes’ Embedding Conjecture through Kirchberg’s QWEP conjecture. While we liked our result, I don’t think that we believed it could resolve any conjecture(s) in functional analysis.

So we moved on. At least I moved on, I did some cryptography for a change. But Anand Natarajan and his co-author John Wright did not stop there. They had the last major insight in this story, which underlies their recent STOC best paper described in the previous post. Briefly, they were able to combine the two lines of work, by Natarajan & myself on low-degree testing and by Ji et al. on compression, to obtain a compression that is specially tailored to the existing \text{MIP}^\star protocol for NEXP and compresses that protocol without reducing its completeness-soundness gap. This then let them show Ji’s result that \text{MIP}^\star contains NEEXP, but this time with constant gap! The result received well-deserved attention. In particular, it is the first in this line of works to not suffer from any caveats (such as a closing gap, or randomized reductions, or some kind of “unfair” tweak on the model that one could attribute the gain in power to), and it implies an unconditional separation between MIP and \text{MIP}^\star.

As they were putting the last touches on their result, suddenly something happened, which is that a path towards a much bigger result opened up. What Natarajan & Wright had achieved is a one-step gapless compression. In our iterated compression paper we had observed that iterated gapless compression would lead to \text{MIP}^\star=\text{RE}, implying negative answers to the aforementioned conjectures. So then?

I suppose it took some more work, but in some way all the ideas had been laid out in the previous 15 years of work in the complexity of quantum interactive proof systems; we just had to put it together. And so a decade after the characterization QIP = PSPACE of single-prover quantum interactive proof systems, we have arrived at a characterization of quantum multiprover interactive proof systems, \text{MIP}^\star = \text{RE}. With one author in common between the two papers: congratulations Zhengfeng!

Even though we just posted a paper, in a sense there is much more left to do. I am hopeful that our complexity-theoretic result will attract enough interest from the mathematicians’ community, and especially operator algebraists, for whom CEP is a central problem, that some of them will be willing to devote time to understanding the result. I also recognize that much effort is needed on our own side to make it accessible in the first place! I don’t doubt that eventually complexity theory will not be needed to obtain the purely mathematical consequences; yet I am hopeful that some of the ideas may eventually find their way into the construction of interesting mathematical objects (such as, who knows, a non-hyperlinear group).

That was a good Masters project…thanks Julia!

On the merits of flatworm reproduction

On my right sat a quantum engineer. She was facing a melanoma specialist who works at a medical school. Leftward of us sat a networks expert, a flatworm enthusiast, and a condensed-matter theorist.

Farther down sat a woman who slices up mouse brains. 

Welcome to “Coherent Spins in Biology,” a conference that took place at the University of California, Los Angeles (UCLA) this past December. Two southern Californians organized the workshop: Clarice Aiello heads UCLA’s Quantum Biology Tech lab. Thorsten Ritz, of the University of California, Irvine, cofounded a branch of quantum biology.

Clarice logo

Quantum biology served as the conference’s backdrop. According to conventional wisdom, quantum phenomena can’t influence biology significantly: Biological systems have high temperatures, many particles, and fluids. Quantum phenomena, such as entanglement (a relationship that quantum particles can share), die quickly under such conditions.

Yet perhaps some survive. Quantum biologists search for biological systems that might use quantum resources. Then, they model and measure the uses and resources. Three settings (at least) have held out promise during the past few decades: avian navigation, photosynthesis, and olfaction. You can read about them in this book, cowritten by a conference participant for the general public. I’ll give you a taste (or a possibly quantum smell?) by sketching the avian-navigation proposal, developed by Thorsten and colleagues.

Bird + flower

Birds migrate southward during the autumn and northward during the spring. How do they know where to fly? At least partially by sensing the Earth’s magnetic field, which leads compass needles to point northward. How do birds sense the field?

Possibly with a protein called “cryptochrome.” A photon (a particle of light) could knock an electron out of part of the protein and into another part. Each part would have one electron that lacked a partner. The electrons would share entanglement. One electron would interact with the Earth’s magnetic field differently than its partner, because its surroundings would differ. (Experts: The electrons would form a radical pair. One electron would neighbor different atoms than the other, so the electron would experience a different local magnetic field. The discrepancy would change the relative phase between the electrons’ spins.) The discrepancy could affect the rate at which the chemical system could undergo certain reactions. Which reactions occur could snowball into large and larger effects, eventually signaling the brain about where the bird should fly.

Angry bird

Quantum mechanics and life rank amongst the universe’s mysteries. How could a young researcher resist the combination? A postdoc warned me away, one lunchtime at the start of my PhD. Quantum biology had enjoyed attention several years earlier, he said, but noise the obscured experimental data. Controversy marred the field.

I ate lunch with that postdoc in 2013. Interest in quantum biology is reviving, as evidenced in the conference. Two reasons suggested themselves: new technologies and new research avenues. For example, Thorsten described the disabling and deletion of genes that code for cryptochrome. Such studies require years’ more work but might illuminate whether cryptochrome affects navigation.

Open door

The keynote speaker, Harvard’s Misha Lukin, illustrated new technologies and new research avenues. Misha’s lab has diamonds that contain quantum defects, which serve as artificial atoms. The defects sense tiny magnetic fields and temperatures. Misha’s group applies these quantum sensors to biology problems.

For example, different cells in an embryo divide at different times. Imagine reversing the order in which the cells divide. Would the reversal harm the organism? You could find out by manipulating the temperatures in different parts of the embryo: Temperature controls the rate at which cells divide.

Misha’s team injected nanoscale diamonds into a worm embryo. (See this paper for a related study.) The diamonds reported the temperature at various points in the worm. This information guided experimentalists who heated the embryo with lasers.

The manipulated embryos grew into fairly normal adults. But their cells, and their descendants’ cells, cycled through the stages of life slowly. This study exemplified, to me, one of the most meaningful opportunities for quantum physicists interested in biology: to develop technologies and analyses that can answer biology questions.

Thermometer

I mentioned, in an earlier blog post, another avenue emerging in quantum biology: Physicist Matthew Fisher proposed a mechanism by which entanglement might enhance coordinated neuron firing. My collaborator Elizabeth Crosson and I analyzed how the molecules in Matthew’s proposal—Posner clusters—could process quantum information. The field of Posner quantum biology had a population of about two, when Elizabeth and I entered, and I wondered whether anyone would join us.

The conference helped resolve my uncertainty. Three speakers (including me) presented work based on Matthew’s; two other participants were tilling the Posner soil; and another speaker mentioned Matthew’s proposal. The other two Posner talks related data from three experiments. The experimentalists haven’t finished their papers, so I won’t share details. But stay tuned.

Posner 2

Posner molecule (image by Swift et al.)

Clarice and Thorsten’s conference reminded me of a conference I’d participated in at the end of my PhD: Last month, I moonlighted as a quantum biologist. In 2017, I moonlighted as a quantum-gravity theorist. Two years earlier, I’d been dreaming about black holes and space-time. At UCLA, I was finishing the first paper I’ve coauthored with biophysicists. What a toolkit quantum information theory and thermodynamics provide, that it can unite such disparate fields. 

The contrast—on top of what I learned at UCLA—filled my mind for weeks. And reminded me of the description of asexual reproduction that we heard from the conference’s flatworm enthusiast. According to Western Michigan University’s Wendy Beane, a flatworm “glues its butt down, pops its head off, and grows a new one. Y’know. As one does.” 

I hope I never flinch from popping my head off and growing a new one—on my quantum-information-thermodynamics spine—whenever new science calls for figuring out.

 

With thanks to Clarice, Thorsten, and UCLA for their invitation and hospitality.

An equation fit for a novel

Archana Kamal was hunting for an apartment in Cambridge, Massachusetts. She was moving MIT, to work as a postdoc in physics. The first apartment she toured had housed John Updike, during his undergraduate career at Harvard. No other apartment could compete; Archana signed the lease.

The apartment occupied the basement of a red-brick building covered in vines. The rooms spanned no more than 350 square feet. Yet her window opened onto the neighbors’ garden, whose leaves she tracked across the seasons. And Archana cohabited with history.

Apartment photos

She’s now studying the universe’s history, as an assistant professor of physics at the University of Massachusetts Lowell. The cosmic microwave background (CMB) pervades the universe. The CMB consists of electromagnetic radiation, or light. Light has particle-like properties and wavelike properties. The wavelike properties include wavelength, the distance between successive peaks. Long-wavelength light includes red light, infrared light, and radio waves. Short-wavelength light includes blue light, ultraviolet light, and X-rays. Light of one wavelength and light of another wavelength are said to belong to different modes.

Wavelength

Does the CMB have nonclassical properties, impossible to predict with classical physics but (perhaps) predictable with quantum theory? The CMB does according to the theory of inflation. According to the theory, during a short time interval after the Big Bang, the universe expanded very quickly: Spacetime stretched. Inflation explains features of our universe, though we don’t know what mechanism would have effected the expansion.

According to inflation, around the Big Bang time, all the light in the universe crowded together. The photons (particles of light) interacted, entangling (developing strong quantum correlations). Spacetime then expanded, and the photons separated. But they might retain entanglement.

Detecting that putative entanglement poses challenges. For instance, the particles that you’d need to measure could produce a signal too weak to observe. Cosmologists have been scratching their heads about how to observe nonclassicality in the CMB. One team—Nishant Agarwal at UMass Lowell and Sarah Shandera at Pennsylvania State University—turned to Archana for help.

A sky full of stars

Archana studies the theory of open quantum systems, quantum systems that interact with their environments. She thinks most about systems such as superconducting qubits, tiny circuits with which labs are building quantum computers. But the visible universe constitutes an open quantum system.

We can see only part of the universe—or, rather, only part of what we believe is the whole universe. Why? We can see only stuff that’s emitted light that has reached us, and light has had only so long to travel. But the visible universe interacts (we believe) with stuff we haven’t seen. For instance, according to the theory of inflation, that rapid expansion stretched some light modes’ wavelengths. Those wavelengths grew longer than the visible universe. We can’t see those modes’ peak-to-peak variations or otherwise observe the modes, often called “frozen.” But the frozen modes act as an environment that exchanges information and energy with the visible universe.

We describe an open quantum system’s evolution with a quantum master equation, which I blogged about four-and-a-half years ago. Archana and collaborators constructed a quantum master equation for the visible universe. The frozen modes, they found, retain memories of the visible universe. (Experts: the bath is non-Markovian.) Next, they need to solve the equation. Then, they’ll try to use their solution to identify quantum observables that could reveal nonclassicality in the CMB.

Frozen modes

Frozen modes

Archana’s project caught my fancy for two reasons. First, when I visited her in October, I was collaborating on a related project. My coauthors and I were concocting a scheme for detecting nonclassical correlations in many-particle systems by measuring large-scale properties. Our paper debuted last month. It might—with thought and a dash of craziness—be applied to detect nonclassicality in the CMB. Archana’s explanation improved my understanding of our scheme’s potential. 

Second, Archana and collaborators formulated a quantum master equation for the visible universe. A quantum master equation for the visible universe. The phrase sounded romantic to me.1 It merited a coauthor who’d seized on an apartment lived in by a Pulitzer Prize-winning novelist. 

Archana’s cosmology and Updike stories reminded me of one reason why I appreciate living in the Boston area: History envelops us here. Last month, while walking to a grocery, I found a sign that marks the building in which the poet e. e. cummings was born. My walking partner then generously tolerated a recitation of cummings’s “anyone lived in a pretty how town.” History enriches our lives—and some of it might contain entanglement.

 

1It might sound like gobbledygook to you, if I’ve botched my explanations of the terminology.

With thanks to Archana and the UMass Lowell Department of Physics and Applied Physics for their hospitality and seminar invitation.