A Quantum Adventure

by Jorge Cham

How do you make something that has never existed before?

I often get suggestions for comics I should draw, which I welcome because A) I like to think of PHD Comics as a global collaborative effort and B) after 17 years, I’m almost out of ideas. This particular suggestion came from Chen-Lung Hung, a postdoc in Physics at Caltech:

PANEL 1 – Ask a scientist: “What motivates you to do the research you do?”

PANEL 2 – What people expect them to answer: “This can lead to real-life applications such as A, B, C, D, etc.”

PANEL 3 – How a real scientist would answer: “Because it’s cool.”

blog_02s

Ok, granted, the punchline needs work. Chen-Lung also asked me to make it clear that his research has important real-life applications, should someone from NSF, who funds his work, happen to be reading this blog.

Chen-Lung’s work with Prof. Jeff Kimble of Caltech’s IQIM is the subject of the third installment in our animated series of explanations of Quantum concepts and devices.

“The problem with atoms,” Prof. Kimble said at one point during our 3-4 hour conversation, “is that they exist in three dimensional space.” I didn’t know that was a problem (unless you expect them to exist in more than 3 dimensions), but Jeff explained that it means it’s very hard to control Quantum systems because the world is wide open, and information can leak and be corrupted from any direction. After a entire academic career making breakthroughs with one type of Quantum System, he’s now directing his group towards a new, experimental type which they believe has more potential for building devices with many Quantum Objects. As Jeff says in the video, “It’s a privilege to be able to explore.”

blog_04s

Shaping light, trapping atoms, alligator waveguides… The goal, Jeff and Chen-lung explained, is to make systems that are “surprising.” Not surprisingly, it was really hard to draw this video. How do you depict something that has never existed before? And more importantly, do you draw alligators differently from crocodiles? (Did you know alligators only exist in two places in the world: the Southern part of the United States, and in China?).

blog_03s

Hopefully, those of you watching will get some understanding of some key Quantum concepts and what it takes to build and manipulate Quantum systems, but to be honest, I make these videos because I think the work is really cool.

Jeff and Chen-Lung: thanks for taking us along on this adventure of yours, the privilege is all ours.

Watch the third installment of this series:

Jorge Cham is the creator of Piled Higher and Deeper (www.phdcomics.com).

CREDITS:

Featuring: Jeff Kimble and Chen-Lung Hung
Animated by Jorge Cham

Produced in Partnership with the Institute for Quantum Information and Matter (http://iqim.caltech.edu) at Caltech with funding provided by the National Science Foundation and the Betty and Gordon Moore Foundation.

The 10 biggest breakthroughs in physics over the past 25 years, according to us.

Making your way to the cutting edge of any field is a daunting challenge. But especially when the edge of the field is expanding; and even harder still when the rate of expansion is accelerating. John recently helped Physics World create a special 25th anniversary issue where they identified the five biggest breakthroughs in physics over the past 25 years, and also the five biggest open questions. In pure John fashion, at his group meeting on Wednesday night, he made us work before revealing the answers. The photo below shows our guesses, where the asterisks denote Physics World‘s selections. This is the blog post I wish I had when I was a fifteen year-old aspiring physicist–this is an attempt to survey and provide a tiny toehold on the edge (from my biased, incredibly naive, and still developing perspective.)

The IQI's

The IQI’s quantum information-biased guesses of Physics World’s 5 biggest breakthroughs over the past 25 years, and 5 biggest open problems. X’s denote Physics World’s selections. Somehow we ended up with 10 selections in each category…

The biggest breakthroughs of the past 25 years:

*Neutrino Mass: surprisingly, neutrinos have a nonzero mass, which provides a window into particle physics beyond the standard model. THE STANDARD MODEL has been getting a lot of attention recently. This is well deserved in my opinion, considering that the vast majority of its predictions have come true, most of which were made by the end of the 1960s. Last year’s discovery of the Higgs Boson is the feather in its cap. However, it’s boring when things work too perfectly, because then we don’t know what path to continue on. That’s where the neutrino mass comes in. First, what are neutrinos? Neutrinos are a fundamental particle that have the special property that they barely interact with other particles. There are four fundamental forces in nature: electromagnetism, gravity, strong (holds quarks together to create neutrons and protons), and weak (responsible for radioactivity and nuclear fusion.) We can design experiments which allow us to observe neutrinos. We have learned that they are electrically neutral, so they aren’t affected by electromagnetism. They are barely affected by the strong force, if at all. They have an extremely small mass, so gravity acts on them only subtly. The main way in which they interact with their environment is through the weak force. Here’s the amazing thing: only really clunky versions of the standard model can allow for a nonzero neutrino mass! Hence, when a small but nonzero mass was experimentally established in 1998, we gained one of our first toeholds into particle physics beyond the standard model. This is particularly important today, because to the best of my knowledge, the LHC hasn’t yet discovered any other new physics beyond the standard model. The mechanism behind the neutrino mass is not yet understood. Moreover, neutrinos have a bunch of other bizarre properties which we understand empirically, but not their theoretical origins. The strangest of which goes by the name neutrino oscillations. In one sentence: there are three different kinds of neutrinos, and they can spontaneously transmute themselves from one type to another. This happens because physics is formulated in the language of mathematics, and the math says that the eigenstates corresponding to ‘flavors’ are not the same as the eigenstates corresponding to ‘mass.’ Words, words, words. Maybe the Caltech particle theory people should have a blog?

Shor’s Algorithm: a quantum computer can factor N=1433301577 into 37811*37907 exponentially faster than a classical computer. This result from Peter Shor in 1994 is near and dear to our quantum hearts. It opened the floodgates showing that there are tasks a quantum computer could perform exponentially faster than a classical computer, and therefore that we should get BIG$$$ from the world over in order to advance our field!! The task here is factoring large numbers into their prime factors; the difficulty of which has been the basis for many cryptographic protocols. In one sentence, Shor’s algorithm achieves this exponential speed-up because there is a step in the factoring algorithm (period finding) which can be performed in parallel via the quantum Fourier transform.
Continue reading

Quantum Matter Animated!

by Jorge Cham

What does it mean for something to be Quantum? I have to confess, I don’t know. My Ph.D was in Robotics and Kinematics, so my neurons are deeply trained to think in terms of classical dynamics. I asked my siblings (two engineers and one architect) what comes to mind for them when they hear the word Quantum, what they remember from college physics, and here is what they said:

– “Quantum Leap!” (the late 80’s TV show)

– “Quantum of Solace!” (the James Bond movie which, incidentally, was filmed in my home country of Panama, even though the movie was set in Bolivia)

– “I don’t remember anything I learned in college”

– “Light acting as a particle instead of a wave?”

The third answer came from my sister, who went to MIT. The fourth came from my brother, who went to Stanford (+1 point for Stanford!).

Screen Shot 2013-06-11 at 12.15.21 AM

I also asked my spouse what comes to mind for her. She said, “Quantum Computing: it’s the next big advance in computers. Transistors the size of atoms.” Clearly, I married someone smarter than me (she also went to Stanford). When I asked if she knew how they worked, she said, “I don’t know how it works.” She also said, “Quantum is related to how time moves more slowly as you approach the speed of light, right?” Nice try, but that’s Relativity (-1 point for Stanford!).

I think the word Quantum has a special power in our collective consciousness. It’s used to convey science-iness, technology, the weirdness of the Physical world. If you Google “Quantum”, most of the top hits are for technology companies that have nothing to do with Quantum Physics (including Quantum Fishing Tackles. I suppose that half the time, you pull up a dead fish).

It’s one of those words that a lot of people have heard of, but very few really understand what it means. Which is why I was excited when Spiros Michalakis and IQIM approached me to produce a series of animations that explore and explain Quantum Information and Matter. Like my previous videos (The Higgs Boson, Dark Matter, Exoplanets), I’d have the chance to interview experts in this field and use their expertise and their voices to learn and to help others learn what amazing things lie just around the corner, beyond our classical understanding of the Universe.

Screen Shot 2013-06-11 at 12.16.55 AM

This will be a big Leap for me (I’m trying to avoid the obvious pun), and a journey of exploration. The first installment goes live today, and you can watch it below. Like Schrödinger’s box, I don’t know what we’ll discover with these videos, but I know there are exciting possibilities inside. This is also going to be a BIG challenge. Understanding and putting Quantum concepts in visual form will be hard. I mean, Hair-pulling hard. Fortunately, I’ve discovered there’s a remedy for that.

Screen Shot 2013-06-11 at 12.17.20 AM

Watch the first installment of this series:

Jorge Cham is the creator of Piled Higher and Deeper (www.phdcomics.com).

CREDITS:

Featuring: Amir Safavi-Naeini and Oskar Painter http://copilot.caltech.edu/

Produced in Partnership with the Institute for Quantum Information and Matter (http://iqim.caltech.edu) at Caltech with funding provided by the National Science Foundation.

Transcription: Noel Dilworth
Thanks to: Spiros Michalakis, John Preskill and Bert Painter

It’s been a tough week for hidden variable theories

The RSS subscriptions which populate my Google Reader mainly fall into two categories: scientific and other. Sometimes patterns emerge when superimposing these disparate fields onto the same photo-detection plate (my brain.) Today, it became abundantly clear that it’s been a tough week for hidden variable theories.

Let me explain. Hidden variable theories were proposed by physicists in an attempt to explain the ‘indeterminism’ which seems to arise in quantum mechanics, and especially in the double-slit experiment. This probably means nothing to many of you, so let me explain further: the hidden variables in Tuesday’s election weren’t enough to trump Nate Silver’s incredibly accurate predictions based upon statistics and data (hidden variables in Tuesday’s election include: “momentum,” “the opinions of undecided voters,” and “pundit’s hunches.”) This isn’t to say that there weren’t hidden variables at play — clearly the statistical models used weren’t fully complete and will someday be improved upon — but hidden variables alone weren’t the dominant influence. Indeed, Barack Obama was re-elected for a second term. However, happy as I was to see statistics trump hunches, the point of this post is not to wax political, but rather to describe the recent failure of hidden variable theories in an arena more appropriate for this blog: quantum experiments.

Continue reading