So long, and thanks for all the Fourier transforms

The air conditioning in Caltech’s Annenberg Center for Information Science and Technology broke this July. Pasadena reached 87°F on the fourth, but my office missed the memo. The thermostat read 62°.

Hyperactive air conditioning suits a thermodynamicist’s office as jittery wifi suits an electrical-engineering building. Thermodynamicists call air conditioners “heat pumps.” A heat pump funnels heat—the energy of random motion—from cooler bodies to hotter. Heat flows spontaneously only from hot to cold on average, according to the Second Law of Thermodynamics. Pumping heat against its inclination costs work, organized energy drawn from a reliable source.

Reliable sources include batteries, coiled springs, and ACME anvils hoisted into the air. Batteries have chemical energy that power electric fans. ACME anvils have gravitational potential energy that splat coyotes.

Thermostat

I hoisted binder after binder onto my desk this July. The binders felt like understudies for ACME anvils, bulging with papers. They contained notes I’d written, and articles I’d read, for research throughout the past five years. My Caltech sojourn was switching off its lights and drawing its shutters. A control theorist was inheriting my desk. I had to move my possessions to an office downstairs, where I’d moonlight until quitting town.

Quitting town.

I hadn’t expected to feel at home in southern California, after stints in New and old England. But research and researchers drew me to California and then hooked me. Caltech’s Institute for Quantum Information and Matter (IQIM) has provided an intellectual home, colleagues-cum-friends, and a base from which to branch out to other scholars and institutions.

The IQIM has provided also the liberty to deck out my research program as a college dorm room with posters—according to my tastes, values, and exuberances. My thesis demanded the title “Quantum steampunk: Quantum information, thermodynamics, their intersection, and applications thereof across physics.” I began developing the concept of quantum steampunk on this blog. Writing a manifesto for the concept, in the thesis’s introduction, proved a delight:

The steampunk movement has invaded literature, film, and art over the past three decades. Futuristic technologies mingle, in steampunk works, with Victorian and wild-west settings. Top hats, nascent factories, and grimy cities counterbalance time machines, airships, and automata. The genre arguably originated in 1895, with the H.G. Wells novel The Time Machine. Recent steampunk books include the best-selling The Invention of Hugo Cabret; films include the major motion picture Wild Wild West; and artwork ranges from painting to jewelry to sculpture.

Steampunk captures the romanticism of fusing the old with the cutting-edge. Technologies proliferated during the Victorian era: locomotives, Charles Babbage’s analytical engine, factories, and more. Innovation facilitated exploration. Add time machines, and the spirit of adventure sweeps you away. Little wonder that fans flock to steampunk conventions, decked out in overcoats, cravats, and goggles.

What steampunk fans dream, quantum-information thermodynamicists live.

Thermodynamics budded during the late 1800s, when steam engines drove the Industrial Revolution. Sadi Carnot, Ludwig Boltzmann, and other thinkers wondered how efficiently engines could operate. Their practical questions led to fundamental insights—about why time flows; how much one can know about a physical system; and how simple macroscopic properties, like temperature, can capture complex behaviors, like collisions by steam particles. An idealization of steam—the classical ideal gas—exemplifies the conventional thermodynamic system. Such systems contain many particles, behave classically, and are often assumed to remain in equilibrium.

But thermodynamic concepts—such as heat, work, and equilibrium—characterize small scales, quantum systems, and out-of-equilibrium processes. Today’s experimentalists probe these settings, stretching single DNA strands with optical tweezers [4], cooling superconducting qubits to build quantum computers [5, 6], and extracting work from single-electron boxes [7]. These settings demand reconciliation with 19th-century thermodynamics. We need a toolkit for fusing the old with the new.

Quantum information (QI) theory provides such a toolkit. Quantum phenomena serve as resources for processing information in ways impossible with classical systems. Quantum computers can solve certain computationally difficult problems quickly; quantum teleportation transmits information as telephones cannot; quantum cryptography secures messages; and quantum metrology centers on high- precision measurements. These applications rely on entanglement (strong correlations between quantum systems), disturbances by measurements, quantum uncertainty, and discreteness.

Technological promise has driven fundamental insights, as in thermodynamics. QI theory has blossomed into a mathematical toolkit that includes entropies, uncertainty relations, and resource theories. These tools are reshaping fundamental science, in applications across physics, computer science, and chemistry.

QI is being used to update thermodynamics, in the field of quantum thermodynamics (QT) [8, 9]. QT features entropies suited to small scales; quantum engines; the roles of coherence in thermalization and transport; and the transduction of information into work, à la Maxwell’s demon [10].

This thesis (i) contributes to the theory of QI thermodynamics and (ii) applies the theory, as a toolkit, across physics. Spheres touched on include atomic, molecular, and optical (AMO) physics; nonequilibrium statistical mechanics; condensed matter; chemistry; and high-energy physics. I propose the name quantum steampunk for this program…

Never did I anticipate, in college, that a PhD could reflect my identity and style. I feared losing myself and my perspective in a subproblem of a subproblem of a subproblem. But I found myself blessed with the chance to name the aesthetic that’s guided my work, the scent I’ve unconsciously followed from book to class to research project to conversation, to paper, since…middle school, come to think of it. I’m grateful for that opportunity.

Q. steampunk

Whump, went my quantum-engine binder on my desk. I’d stuck an address label, pointing to Annenberg, to the binder. If the binder walked away, whoever found it would know where it belonged. Scratching at the label with a fingernail failed to budge the sticker. I stuck a label addressed to Cambridge, Massachusetts alongside the Pasadena address.

I’m grateful to be joining Harvard as an ITAMP (Institute for Theoretical Atomic, Molecular, and Optical Physics) Postdoctoral Fellow. You’ll be able to catch me in Harvard’s physics department, in ITAMP, or at MIT, starting this September.

While hunting for a Cambridge apartment, I skyped with potential roommates. I’d inquire about locations, about landlords and landladies, about tidiness, and about heating. The heating system’s pretty old, most tenants would admit. We keep the temperature between 60 and 65 degrees, to keep costs down. I’d nod and extol the layering of sweaters, but I shivered inside.

One tenant surprised me. The heating…works too well, she said. It’s pretty warm, to tell the truth. I thought about heat pumps and quantum engines, about picnics in the Pasadena sunshine, about the Julys I’d enjoyed while the world around me had sweated. Within an hour, I’d committed to sharing the apartment.

Boxes

Some of you have asked whether I’ll continue blogging for Quantum Frontiers. Yes: Extricating me from the IQIM requires more than 3,000 miles.

See you in Cambridge.

 

With apologies to Douglas Adams.

This entry was posted in News, Reflections, Theoretical highlights by Nicole Yunger Halpern. Bookmark the permalink.

About Nicole Yunger Halpern

I’m a theoretical physicist at the Joint Center for Quantum Information and Computer Science in Maryland. My research group re-envisions 19th-century thermodynamics for the 21st century, using the mathematical toolkit of quantum information theory. We then apply quantum thermodynamics as a lens through which to view the rest of science. I call this research “quantum steampunk,” after the steampunk genre of art and literature that juxtaposes Victorian settings (à la thermodynamics) with futuristic technologies (à la quantum information). For more information, check out my book for the general public, Quantum Steampunk: The Physics of Yesterday’s Tomorrow. I earned my PhD at Caltech under John Preskill’s auspices; one of my life goals is to be the subject of one of his famous (if not Pullitzer-worthy) poems. Follow me on Twitter @nicoleyh11.

11 thoughts on “So long, and thanks for all the Fourier transforms

  1. Pingback: The importance of being open | Quantum Frontiers

  2. Pingback: What distinguishes quantum thermodynamics from quantum statistical mechanics? | Quantum Frontiers

  3. Pingback: The quantum steampunker by Massachusetts Bay | Quantum Frontiers

  4. Pingback: The grand tour of quantum thermodynamics | Quantum Frontiers

  5. Pingback: Quantum steampunk is heading to bookstores! | Quantum Frontiers

  6. Pingback: My 100th anniversary with Quantum Frontiers | Quantum Frontiers

  7. Pingback: Announcing the quantum-steampunk short-story contest! | Quantum Frontiers

  8. Pingback: Eight highlights from publishing a science book for the general public | Quantum Frontiers

Your thoughts here.