Blending science with fiction in Baltimore

I judge a bookstore by the number of Diana Wynne Jones novels it stocks. The late British author wrote some of the twentieth century’s most widely lauded science-fiction and fantasy (SFF). She clinched more honors than I should list, including two World Fantasy Awards. Neil Gaiman, author of American Gods, called her “the best children’s writer of the last forty years” in 2010—and her books suit children of all ages.1 But Wynne Jones passed away as I was finishing college, and her books have been disappearing from American bookshops. The typical shop stocks, at best, a book in the series she began with Howl’s Moving Castle, which Hayao Miyazaki adapted into an animated film.

I don’t recall the last time I glimpsed Deep Secret in a bookshop, but it ranks amongst my favorite Wynne Jones books—and favorite books, full-stop. So I relished living part of that book this spring.

Deep Secret centers on video-game programmer Rupert Venables. Outside of his day job, he works as a Magid, a magic user who helps secure peace and progress across the multiple worlds. Another Magid has passed away, and Rupert must find a replacement for him. How does Rupert track down and interview his candidates? By consolidating their fate lines so that the candidates converge on an SFF convention. Of course.

My fate line drew me to an SFF convention this May. Balticon takes place annually in Baltimore, Maryland. It features not only authors, agents, and publishers, but also science lecturers. I received an invitation to lecture about quantum steampunk—not video-game content,2 but technology-oriented like Rupert’s work. I’d never attended an SFF convention,3 so I reread Deep Secret as though studying for an exam.

Rupert, too, is attending his first SFF convention. A man as starched as his name sounds, Rupert packs suits, slacks, and a polo-neck sweater for the weekend—to the horror of a denim-wearing participant. I didn’t bring suits, in my defense. But I did dress business-casual, despite having anticipated that jeans, T-shirts, and capes would surround me.

I checked into a Renaissance Hotel for Memorial Day weekend, just as Rupert checks into the Hotel Babylon for Easter weekend. Like him, I had to walk an inordinately long distance from the elevators to my room. But Rupert owes his trek to whoever’s disrupted the magical node centered on his hotel. My hotel’s architects simply should have installed more elevator banks.

Balticon shared much of its anatomy with Rupert’s con, despite taking place in a different century and country (not to mention world). Participants congregated downstairs at breakfast (continental at Balticon, waitered at Rupert’s hotel). Lectures and panels filled most of each day. A masquerade took place one night. (I slept through Balticon’s; impromptu veterinary surgery occupies Rupert during his con’s.) Participants vied for artwork at an auction. Booksellers and craftspeople hawked their wares in a dealer’s room. (None of Balticon’s craftspeople knew their otherworldly subject matter as intimately as Rupert’s Magid colleague Zinka Fearon does, I trust. Zinka paints her off-world experiences when in need of cash.)

In our hotel room, I read out bits of Deep Secret to my husband, who confirmed the uncanniness with which they echoed our experiences. Both cons featured floor-length robes, Batman costumes, and the occasional slinky dress. Some men sported long-enough locks, and some enough facial hair, to do a Merovingian king proud. Rupert registers “a towering papier-mâché and plastic alien” one night; on Sunday morning, a colossal blow-up unicorn startled my husband and me. We were riding the elevator downstairs to breakfast, pausing at floor after floor. Hotel guests packed the elevator like Star Wars fans at a Lucasfilm debut. Then, the elevator halted again. The doors opened on a bespectacled man, 40-something years old by my estimate, dressed as a blue-and-white unicorn. The costume billowed out around him; the golden horn towered multiple feet above his head. He gazed at our sardine can, and we gazed at him, without speaking. The elevator doors shut, and we continued toward breakfast.

Photo credit: Balticon

Despite having read Deep Secret multiple times, I savored it again. I even laughed out loud. Wynne Jones paints the SFF community with the humor, exasperation, and affection one might expect of a middle-school teacher contemplating her students. I empathize, belonging to a community—the physics world—nearly as idiosyncratic as the SFF community.4 Wynne Jones’s warmth for her people suffuses Deep Secret; introvert Rupert surprises himself by enjoying a dinner with con-goers and wishing to spend more time with them. The con-goers at my talk exhibited as much warmth as any audience I’ve spoken to, laughing, applauding, and asking questions. I appreciated sojourning in their community for a weekend.5

This year, my community is fêting the physicists who founded quantum theory a century ago. Wynne Jones sparked imaginations two decades ago. Let’s not let her memory slip from our fingertips like a paperback over which we’re falling asleep. After all, we aren’t forgetting Louis de Broglie, Paul Dirac, and their colleagues. So check out a Wynne Jones novel the next time you visit a library, or order a novel of hers to your neighborhood bookstore. Deep Secret shouldn’t be an actual secret.

With thanks to Balticon’s organizers, especially Miriam Winder Kelly, for inviting me and for fussing over their speakers’ comfort like hens over chicks.

1Wynne Jones dedicated her novel Hexwood to Gaiman, who expressed his delight in a poem. I fancy the comparison of Gaiman, a master of phantasmagoria and darkness, to a kitten.

2Yet?

3I’d attended a steampunk convention, and spoken at a Boston SFF convention, virtually. But as far as such conventions go, attending virtually is to attending in person as my drawings are to a Hayao Miyazaki film.

4But sporting fewer wizard hats.

5And I wonder what the Diana Wynne Jones Conference–Festival is like.

John Preskill receives 2025 Quantum Leadership Award

The 2025 Quantum Leadership Awards were announced at the Quantum World Congress on 18 September 2025. Upon receiving the Academic Pioneer in Quantum Award, John Preskill made these remarks.

I’m enormously excited and honored to receive this Quantum Leadership Award, and especially thrilled to receive it during this, the International Year of Quantum. The 100th anniversary of the discovery of quantum mechanics is a cause for celebration because that theory provides our deepest and most accurate description of how the universe works, and because that deeper understanding has incalculable value to humanity. What we have learned about electrons, photons, atoms, and molecules in the past century has already transformed our lives in many ways, but what lies ahead, as we learn to build and precisely control more and more complex quantum systems, will be even more astonishing.

As a professor at a great university, I have been lucky in many ways. Lucky to have the freedom to pursue the scientific challenges that I find most compelling and promising. Lucky to be surrounded by remarkable, supportive colleagues. Lucky to have had many collaborators who enabled me to do things I could never have done on my own. And lucky to have the opportunity to teach and mentor young scientists who have a passion for advancing the frontiers of science. What I’m most proud of is the quantum community we’ve built at Caltech, and the many dozens of young people who imbibed the interdisciplinary spirit of Caltech and then moved onward to become leaders in quantum science at universities, labs, and companies all over the world.

Right now is a thrilling time for quantum science and technology, a time of rapid progress, but these are still the early days in a nascent second quantum revolution. In quantum computing, we face two fundamental questions: How can we scale up to quantum machines that can solve very hard computational problems? And once we do so, what will be the most important applications for science and for industry? We don’t have fully satisfying answers yet to either question and we won’t find the answers all at once – they will unfold gradually as our knowledge and technology advance. But 10 years from now we’ll have much better answers than we have today.

Companies are now pursuing ambitious plans to build the world’s most powerful quantum computers.  Let’s not forget how we got to this point. It was by allowing some of the world’s most brilliant people to follow their curiosity and dream about what the future could bring. To fulfill the potential of quantum technology, we need that spirit of bold adventure now more than ever before. This award honors one scientist, and I’m profoundly grateful for this recognition. But more importantly it serves as a reminder of the vital ongoing need to support the fundamental research that will build foundations for the science and technology of the future. Thank you very much!