About preskill

I am a theoretical physicist at Caltech, and the Director of the Institute for Quantum Information and Matter. Follow me on Twitter @preskill.

Here’s one way to get out of a black hole!

Two weeks ago I attended an exciting workshop at Stanford, organized by the It from Qubit collaboration, which I covered enthusiastically on Twitter. Many of the talks at the workshop provided fodder for possible blog posts, but one in particular especially struck my fancy. In explaining how to recover information that has fallen into a black hole (under just the right conditions), Juan Maldacena offered a new perspective on a problem that has worried me for many years. I am eagerly awaiting Juan’s paper, with Douglas Stanford and Zhenbin Yang, which will provide more details.


My cell-phone photo of Juan Maldacena lecturing at Stanford, 22 March 2017.

Almost 10 years ago I visited the Perimeter Institute to attend a conference, and by chance was assigned an office shared with Patrick Hayden. Patrick was a professor at McGill at that time, but I knew him well from his years at Caltech as a Sherman Fairchild Prize Fellow, and deeply respected him. Our proximity that week ignited a collaboration which turned out to be one of the most satisfying of my career.

To my surprise, Patrick revealed he had been thinking about  black holes, a long-time passion of mine but not previously a research interest of his, and that he had already arrived at a startling insight which would be central to the paper we later wrote together. Patrick wondered what would happen if Alice possessed a black hole which happened to be highly entangled with a quantum computer held by Bob. He imagined Alice throwing a qubit into the black hole, after which Bob would collect the black hole’s Hawking radiation and feed it into his quantum computer for processing. Drawing on his knowledge about quantum communication through noisy channels, Patrick argued that  Bob would only need to grab a few qubits from the radiation in order to salvage Alice’s qubit successfully by doing an appropriate quantum computation.


Alice tosses a qubit into a black hole, which is entangled with Bob’s quantum computer. Bob grabs some Hawking radiation, then does a quantum computation to decode Alice’s qubit.

This idea got my adrenaline pumping, stirring a vigorous dialogue. Patrick had initially assumed that the subsystem of the black hole ejected in the Hawking radiation had been randomly chosen, but we eventually decided (based on a simple picture of the quantum computation performed by the black hole) that it should take a time scaling like M log M (where M is the black hole mass expressed in Planck units) for Alice’s qubit to get scrambled up with the rest of her black hole. Only after this scrambling time would her qubit leak out in the Hawking radiation. This time is actually shockingly short, about a millisecond for a solar mass black hole. The best previous estimate for how long it would take for Alice’s qubit to emerge (scaling like M3), had been about 1067 years.

This short time scale aroused memories of discussions with Lenny Susskind back in 1993, vividly recreated in Lenny’s engaging book The Black Hole War. Because of the black hole’s peculiar geometry, it seemed conceivable that Bob could distill a copy of Alice’s qubit from the Hawking radiation and then leap into the black hole, joining Alice, who could then toss her copy of the qubit to Bob. It disturbed me that Bob would then hold two perfect copies of Alice’s qubit; I was a quantum information novice at the time, but I knew enough to realize that making a perfect clone of a qubit would violate the rules of quantum mechanics. I proposed to Lenny a possible resolution of this “cloning puzzle”: If Bob has to wait outside the black hole for too long in order to distill Alice’s qubit, then when he finally jumps in it may be too late for Alice’s qubit to catch up to Bob inside the black hole before Bob is destroyed by the powerful gravitational forces inside. Revisiting that scenario, I realized that the scrambling time M log M, though short, was just barely long enough for the story to be self-consistent. It was gratifying that things seemed to fit together so nicely, as though a deep truth were being affirmed.


If Bob decodes the Hawking radiation and then jumps into the black hole, can he acquire two identical copies of Alice’s qubit?

Patrick and I viewed our paper as a welcome opportunity to draw the quantum information and quantum gravity communities closer together, and we wrote it with both audiences in mind. We had fun writing it, adding rhetorical flourishes which we hoped would draw in readers who might otherwise be put off by unfamiliar ideas and terminology.

In their recent work, Juan and his collaborators propose a different way to think about the problem. They stripped down our Hawking radiation decoding scenario to a model so simple that it can be analyzed quite explicitly, yielding a pleasing result. What had worried me so much was that there seemed to be two copies of the same qubit, one carried into the black hole by Alice and the other residing outside the black hole in the Hawking radiation. I was alarmed by the prospect of a rendezvous of the two copies. Maldacena et al. argue that my concern was based on a misconception. There is just one copy, either inside the black hole or outside, but not both. In effect, as Bob extracts his copy of the qubit on the outside, he destroys Alice’s copy on the inside!

To reach this conclusion, several ideas are invoked. First, we analyze the problem in the case where we understand quantum gravity best, the case of a negatively curved spacetime called anti-de Sitter space.  In effect, this trick allows us to trap a black hole inside a bottle, which is very advantageous because we can study the physics of the black hole by considering what happens on the walls of the bottle. Second, we envision Bob’s quantum computer as another black hole which is entangled with Alice’s black hole. When two black holes in anti-de Sitter space are entangled, the resulting geometry has a “wormhole” which connects together the interiors of the two black holes. Third, we chose the entangled pair of black holes to be in a very special quantum state, called the “thermofield double” state. This just means that the wormhole connecting the black holes is as short as possible. Fourth, to make the analysis even simpler, we suppose there is just one spatial dimension, which makes it easier to draw a picture of the spacetime. Now each wall of the bottle is just a point in space, with the left wall lying outside Bob’s side of the wormhole, and the right wall lying outside Alice’s side.

An important property of the wormhole is that it is not traversable. That is, when Alice throws her qubit into her black hole and it enters her end of the wormhole, the qubit cannot emerge from the other end. Instead it is stuck inside, unable to get out on either Alice’s side or Bob’s side. Most ways of manipulating the black holes from the outside would just make the wormhole longer and exacerbate the situation, but in a clever recent paper Ping Gao, Daniel Jafferis, and Aron Wall pointed out an exception. We can imagine a quantum wire connecting the left wall and right wall, which simulates a process in which Bob extracts a small amount of Hawking radiation from the right wall (that is, from Alice’s black hole), and carefully deposits it on the left wall (inserting it into Bob’s quantum computer). Gao, Jafferis, and Wall find that this procedure, by altering the trajectories of Alice’s and Bob’s walls, can actually make the wormhole traversable!


(a) A nontraversable wormhole. Alice’s qubit, thrown into the black hole, never reaches Bob. (b) Stealing some Hawking radiation from Alice’s side and inserting it on Bob’s side makes the wormhole traversable. Now Alice’s qubit reaches Bob, who can easily “decode” it.

This picture gives us a beautiful geometric interpretation of the decoding protocol that Patrick and I had described. It is the interaction between Alice’s wall and Bob’s wall that brings Alice’s qubit within Bob’s grasp. By allowing Alice’s qubit to reach Bob at the other end of the wormhole, that interaction suffices to perform Bob’s decoding task, which is especially easy in this case because Bob’s quantum computer was connected to Alice’s black hole by a short wormhole when she threw her qubit inside.


If, after a delay, Bob’s jumps into the black hole, he might find Alice’s qubit inside. But if he does, that qubit cannot be decoded by Bob’s quantum computer. Bob has no way to attain two copies of the qubit.

And what if Bob conducts his daring experiment, in which he decodes Alice’s qubit while still outside the black hole, and then jumps into the black hole to check whether the same qubit is also still inside? The above spacetime diagram contrasts two possible outcomes of Bob’s experiment. After entering the black hole, Alice might throw her qubit toward Bob so he can catch it inside the black hole. But if she does, then the qubit never reaches Bob’s quantum computer, and he won’t be able to decode it from the outside. On the other hand, Alice might allow her qubit to reach Bob’s quantum computer at the other end of the (now traversable) wormhole. But if she does, Bob won’t find the qubit when he enters the black hole. Either way, there is just one copy of the qubit, and no way to clone it. I shouldn’t have been so worried!

Granted, we have only described what happens in an oversimplified model of a black hole, but the lessons learned may be more broadly applicable. The case for broader applicability rests on a highly speculative idea, what Maldacena and Susskind called the ER=EPR conjecture, which I wrote about in this earlier blog post. One consequence of the conjecture is that a black hole highly entangled with a quantum computer is equivalent, after a transformation acting only on the computer, to two black holes connected by a short wormhole (though it might be difficult to actually execute that transformation). The insights of Gao-Jafferis-Wall and Maldacena-Stanford-Yang, together with the ER=EPR viewpoint, indicate that we don’t have to worry about the same quantum information being in two places at once. Quantum mechanics can survive the attack of the clones. Whew!

Thanks to Juan, Douglas, and Lenny for ongoing discussions and correspondence which have helped me to understand their ideas (including a lucid explanation from Douglas at our Caltech group meeting last Wednesday). This story is still unfolding and there will be more to say. These are exciting times!

Toward a Coherent US Government Strategy for QIS

In an upbeat  recent post, Spiros reported some encouraging news about quantum information science from the US National Science and Technology Council. Today I’ll chime in with some further perspective and background.

report-cover-2The Interagency Working Group on Quantum Information Science (IWG on QIS), which began its work in late 2014, was charged “to assess Federal programs in QIS, monitor the state of the field, provide a forum for interagency coordination and collaboration, and engage in strategic planning of Federal QIS activities and investments.”  The IWG recently released a  well-crafted report, Advancing Quantum Information Science: National Challenges and Opportunities. The report recommends that “quantum information science be considered a priority for Federal coordination and investment.”

All the major US government agencies supporting QIS were represented on the IWG, which was co-chaired by officials from DOE, NSF, and NIST:

  • Steve Binkley, who heads the Advanced Scientific Computing Research (ASCR) program in the Department of Energy Office of Science,
  • Denise Caldwell, who directs the Physics Division of the National Science Foundation,
  • Carl Williams, Deputy Director of the Physical Measurement Laboratory at the National Institute for Standards and Technology.

Denise and Carl have been effective supporters of QIS over many years of government service. Steve has recently emerged as another eloquent advocate for the field’s promise and importance.

At our request, the three co-chairs fielded questions about the report, with the understanding that their responses would be broadly disseminated. Their comments reinforced the message of the report — that all cognizant agencies favor a “coherent, all-of-government approach to QIS.”

Science funding in the US differs from elsewhere in the world. QIS is a prime example — for over 20 years, various US government agencies, each with its own mission, goals, and culture, have had a stake in QIS research. By providing more options for supporting innovative ideas, the existence of diverse autonomous funding agencies can be a blessing. But it can also be bewildering for scientists seeking support, and it poses challenges for formulating and executing effective national science policy. It’s significant that many different agencies worked together in the IWG, and were able to align with a shared vision.

“I think that everybody in the group has the same goals,” Denise told us. “The nation has a tremendous opportunity here. This is a terrifically important field for all of us involved, and we all want to see it succeed.” Carl added, “All of us believe that this is an area in which the US must be competitive, it is very important for both scientific and technological reasons … The differences [among agencies] are minor.”

Asked about the timing of the IWG and its report, Carl noted the recent trend toward “emerging niche applications” of QIS such as quantum sensors, and Denise remarked that government agencies are responding to a plea from industry for a cross-disciplinary work force broadly trained in QIS. At the same time, Denise emphasized, the IWG recognizes that “there are still many open basic science questions that are important for this field, and we need to focus investment onto these basic science questions, as well as look at investments or opportunities that lead into the first applications.”

DOE’s FY2017 budget request includes $10M to fund a new QIS research program, coordinated with NIST and NSF. Steve explained the thinking behind that request:  “There are problems in the physical science space, spanned by DOE Office of Science programs, where quantum computation would be a useful a tool. This is the time to start making investments in that area.” Asked about the longer term commitment of DOE to QIS research, Steve was cautious. “What it will grow into over time is hard to tell — we’re right at the beginning.”

What can the rest of us in the QIS community do to amplify the impact of the report? Carl advised: “All of us should continue getting the excitement of the field out there, [and point to] the potential long term payoffs,  whether they be in searches for dark matter or building better clocks or better GPS systems or better sensors. Making everybody aware of all the potential is good for our economy, for our country, and for all of us.”

Taking an even longer view, Denise reminded us that effective advocacy for QIS can get young people “excited about a field they can work in, where they can get jobs, where they can pursue science — that can be critically important.  If we all think back to our own beginning careers, at some point in time we got excited about science. And so whatever one can do to excite the next generation about science and technology, with the hope of bringing them into studying and developing careers in this field, to me this is tremendously valuable. ”

All of us in the quantum information science community owe a debt to the IWG for their hard work and eloquent report, and to the agencies they represent for their vision and support. And we are all fortunate to be participating in the early stages of a new quantum revolution. As the IWG report makes clear, the best is yet to come.

LIGO: Playing the long game, and winning big!

Wow. What a day! And what a story!

Kip Thorne in 1972, around the time MTW was completed.

Kip Thorne in 1972, around the time MTW was completed.

It is hard for me to believe, but I have been on the Caltech faculty for nearly a third of a century. And when I arrived in 1983, interferometric detection of gravitational waves was already a hot topic of discussion here. At Kip Thorne’s urging, Ron Drever had been recruited to Caltech and was building the 40-meter prototype interferometer (which is still operating as a testbed for future detection technologies). Kip and his colleagues, spurred by Vladimir Braginsky’s insights, had for several years been actively studying the fundamental limits of quantum measurement precision, and how these might impact the search for gravitational waves.

I decided to bone up a bit on the subject, so naturally I pulled down from my shelf the “telephone book” — Misner, Thorne, and Wheeler’s mammoth Gravitationand browsed Chapter 37 (Detection of Gravitational Wave), for which Kip had been the lead author. The chapter brimmed over with enthusiasm for the subject, but to my surprise interferometers were hardly mentioned. Instead the emphasis was on mechanical bar detectors. These had been pioneered by Joseph Weber, whose efforts in the 1960s had first aroused Kip’s interest in detecting gravitational waves, and by Braginsky.

I sought Kip out for an explanation, and with characteristic clarity and patience he told how his views had evolved. He had realized in the 1970s that a strain sensitivity of order 10^{-21} would be needed for a good chance at detection, and after many discussions with colleagues like Drever, Braginsky, and Rai Weiss, he had decided that kind of sensitivity would not be achievable with foreseeable technology using bars.

Ron Drever, who built Caltech's 40-meter prototype interferometer in the 1980s.

Ron Drever, who built Caltech’s 40-meter prototype interferometer in the 1980s.

We talked about what would be needed — a kilometer scale detector capable of sensing displacements of 10^{-18} meters. I laughed. As he had many times by then, Kip told why this goal was not completely crazy, if there is enough light in an interferometer, which bounces back and forth many times as a waveform passes. Immediately after the discussion ended I went to my desk and did some crude calculations. The numbers kind of worked, but I shook my head, unconvinced. This was going to be a huge undertaking. Success seemed unlikely. Poor Kip!

I’ve never been involved in LIGO, but Kip and I remained friends, and every now and then he would give me the inside scoop on the latest developments (most memorably while walking the streets of London for hours on a beautiful spring evening in 1991). From afar I followed the forced partnership between Caltech and MIT that was forged in the 1980s, and the painful transition from a small project under the leadership of Drever-Thorne-Weiss (great scientists but lacking much needed management expertise) to a large collaboration under a succession of strong leaders, all based at Caltech.

Vladimir Braginsky, who realized that quantum effects constrain gravitational wave detectors.

Vladimir Braginsky, who realized that quantum effects limit the sensitivity of  gravitational wave detectors.

During 1994-95, I co-chaired a committee formulating a long-range plan for Caltech physics, and we spent more time talking about LIGO than any other issue. Part of our concern was whether a small institution like Caltech could absorb such a large project, which was growing explosively and straining Institute resources. And we also worried about whether LIGO would ultimately succeed. But our biggest worry of all was different — could Caltech remain at the forefront of gravitational wave research so that if and when LIGO hit paydirt we would reap the scientific benefits?

A lot has changed since then. After searching for years we made two crucial new faculty appointments: theorist Yanbei Chen (2007), who provided seminal ideas for improving sensitivity, and experimentalist Rana Adhikari (2006), a magician at the black art of making an interferometer really work. Alan Weinstein transitioned from high energy physics to become a leader of LIGO data analysis. We established a world-class numerical relativity group, now led by Mark Scheel. Staff scientists like Stan Whitcomb also had an essential role, as did longtime Project Manager Gary Sanders. LIGO Directors Robbie Vogt, Barry Barish, Jay Marx, and now Dave Reitze have provided effective and much needed leadership.

Rai Weiss, around the time he conceived LIGO in an amazing 1972 paper.

Rai Weiss, around the time he conceived LIGO in an amazing 1972 paper.

My closest connection to LIGO arose during the 1998-99 academic year, when Kip asked me to participate in a “QND reading group” he organized. (QND stands for Quantum Non-Demolition, Braginsky’s term for measurements that surpass the naïve quantum limits on measurement precision.) At that time we envisioned that Advanced LIGO would turn on in 2008, yet there were still many questions about how it would achieve the sensitivity required to ensure detection. I took part enthusiastically, and learned a lot, but never contributed any ideas of enduring value. The discussions that year did have positive outcomes, however; leading for example to a seminal paper by Kimble, Levin, Matsko, Thorne, and Vyatchanin on improving precision through squeezing of light. By the end of the year I had gained a much better appreciation of the strength of the LIGO team, and had accepted that Advanced LIGO might actually work!

I once asked Vladimir Braginsky why he spent years working on bar detectors for gravitational waves, while at the same time realizing that fundamental limits on quantum measurement would make successful detection very unlikely. Why wasn’t he trying to build an interferometer already in the 1970s? Braginsky loved to be asked questions like this, and his answer was a long story, told with many dramatic flourishes. The short answer is that he viewed interferometric detection of gravitational waves as too ambitious. A bar detector was something he could build in his lab, while an interferometer of the appropriate scale would be a long-term project involving a much larger, technically diverse team.

Joe Weber, who audaciously believed gravitational waves can be detected on earth.

Joe Weber, whose audacious belief that gravitational waves are detectable on earth inspired Kip Thorne and many others.

Kip’s chapter in MTW ends with section 37.10 (“Looking toward the future”) which concludes with this juicy quote (written almost 45 years ago):

“The technical difficulties to be surmounted in constructing such detectors are enormous. But physicists are ingenious; and with the impetus provided by Joseph Weber’s pioneering work, and with the support of a broad lay public sincerely interested in pioneering in science, all obstacles will surely be overcome.”

That’s what we call vision, folks. You might also call it cockeyed optimism, but without optimism great things would never happen.

Optimism alone is not enough. For something like the detection of gravitational waves, we needed technical ingenuity, wise leadership, lots and lots of persistence, the will to overcome adversity, and ultimately the efforts of hundreds of hard working, talented scientists and engineers. Not to mention the courage displayed by the National Science Foundation in supporting such a risky project for decades.

I have never been prouder than I am today to be part of the Caltech family.

Wouldn’t you like to know what’s going on in my mind?

I suppose most theoretical physicists who (like me) are comfortably past the age of 60 worry about their susceptibility to “crazy-old-guy syndrome.” (Sorry for the sexism, but all the victims of this malady I know are guys.) It can be sad when a formerly great scientist falls far out of the mainstream and seems to be spouting nonsense.

Matthew Fisher is only 55, but reluctance to be seen as a crazy old guy might partially explain why he has kept pretty quiet about his passionate pursuit of neuroscience over the past three years. That changed two months ago when he posted a paper on the arXiv about Quantum Cognition.

Neuroscience has a very seductive pull, because it is at once very accessible and very inaccessible. While a theoretical physicist might think and write about a brane even without having or seeing a brane, everybody’s got a brain (some scarecrows excepted). On the other hand, while it’s not too hard to write down and study the equations that describe a brane, it is not at all easy to write down the equations for a brain, let alone solve them. The brain is fascinating because we know so little about it. And … how can anyone with a healthy appreciation for Gödel’s Theorem not be intrigued by the very idea of a brain that thinks about itself?

(Almost) everybody's got a brain.

(Almost) everybody’s got a brain.

The idea that quantum effects could have an important role in brain function is not new, but is routinely dismissed as wildly implausible. Matthew Fisher begs to differ. And those who read his paper (as I hope many will) are bound to conclude: This old guy’s not so crazy. He may be onto something. At least he’s raising some very interesting questions.

My appreciation for Matthew and his paper was heightened further this Wednesday, when Matthew stopped by Caltech for a lunch-time seminar and one of my interminable dinner-time group meetings. I don’t know whether my brain is performing quantum information processing (and neither does Matthew), but just the thought that it might be is lighting me up like a zebrafish.

Following Matthew, let’s take a deep breath and ask ourselves: What would need to be true for quantum information processing to be important in the brain? Presumably we would need ways to (1) store quantum information for a long time, (2) transport quantum information, (3) create entanglement, and (4) have entanglement influence the firing of neurons. After a three-year quest, Matthew has interesting things to say about all of these issues. For details, you should read the paper.

Matthew argues that the only plausible repositories for quantum information in the brain are the Phosphorus-31 nuclear spins in phosphate ions. Because these nuclei are spin-1/2, they have no electric quadrupole moments and hence corresponding long coherence times — of order a second. That may not be long enough, but phosphate ions can be bound with calcium ions into objects called Posner clusters, each containing six P-31 nuclei. The phosphorus nuclei in Posner clusters might have coherence times greatly enhanced by motional narrowing, perhaps as long as weeks or even longer.

Where energy is being consumed in a cell, ATP sometimes releases diphosphate ions (what biochemists call pyrophosphate), which are later broken into two separate phosphate ions, each with a single P-31 qubit. Matthew argues that the breakup of the diphosphate, catalyzed by a suitable enzyme, will occur at an enhanced rate when these two P-31 qubits are in a spin singlet rather than a spin triplet. The reason is that the enzyme has to grab ahold of the diphosphate molecule and stop its rotation in order to break it apart, which is much easier when the molecule has even rather than odd orbital angular momentum; therefore due to Fermi statistics the spin state of the P-31 nuclei must be antisymmetric. Thus wherever ATP is consumed there is a plentiful source of entangled qubit pairs.

If the phosphate molecules remain unbound, this entanglement will decay in about a second, but it is a different story if the phosphate ions group together quickly enough into Posner clusters, allowing the entanglement to survive for a much longer time. If the two members of an entangled qubit pair are snatched up by different Posner clusters, the clusters may then be transported into different cells, distributing the entanglement over relatively long distances.

(a) Two entangled Posner clusters. Each dot is a P-31 nuclear spin, and each dashed line represents a singlet pair. (b) Many entangled Posner clusters. [From the paper]

(a) Two entangled Posner clusters. Each dot is a P-31 nuclear spin, and each dashed line represents a singlet pair. (b) Many entangled Posner clusters. [From Fisher 2015]

What causes a neuron to fire is a complicated story that I won’t attempt to wade into. Suffice it to say that part of the story may involve the chemical binding of a pair of Posner clusters which then melt if the environment is sufficiently acidic, releasing calcium ions and phosphate ions which enhance the firing. The melting rate depends on the spin state of the six P-31 nuclei within the cluster, so that entanglement between clusters in different cells may induce nonlocal correlations among different neurons, which could be quite complex if entanglement is widely distributed.

This scenario raises more questions than it answers, but these are definitely scientific questions inviting further investigation and experimental exploration. One thing that is far from clear at this stage is whether such quantum correlations among neurons (if they exist at all) would be easy to simulate with a classical computer. Even if that turns out to be so, these potential quantum effects involving many neurons could be fabulously interesting. IQIM’s mission is to reach for transformative quantum science, particularly approaches that take advantage of synergies between different fields of study. This topic certainly qualifies.* It’s going to be great fun to see where it leads.

If you are a young and ambitious scientist, you may be contemplating the dilemma: Should I pursue quantum physics or neuroscience? Maybe, just maybe, the right answer is: Both.

*Matthew is the only member of the IQIM faculty who is not a Caltech professor, though he once was.

Beware global search and replace!

I’m old enough to remember when cutting and pasting were really done with scissors and glue (or Scotch tape). When I was a graduate student in the late 1970s, few physicists typed their own papers, and if they did they left gaps in the text, to be filled in later with handwritten equations. The gold standard of technical typing was the IBM Correcting Selectric II typewriter. Among its innovations was the correction ribbon, which allowed one to remove a typo with the touch of a key. But it was especially important for scientists that the Selectric could type mathematical characters, including Greek letters.

IBM Selectric typeballs

IBM Selectric typeballs

It wasn’t easy. Many different typeballs were available, to support various fonts and special characters. Typing a displayed equation or in-line equation usually involved swapping back and forth between typeballs to access all the needed symbols. Most physics research groups had staff who knew how to use the IBM Selectric and spent much of their time typing manuscripts.

Though the IBM Selectric was used by many groups, typewriters have unique personalities, as forensic scientists know. I had a friend who claimed he had learned to recognize telltale differences among documents produced by various IBM Selectric machines. That way, whenever he received a referee report, he could identify its place of origin.

Manuscripts did not evolve through 23 typeset versions in those days, as one of my recent papers did. Editing was arduous and frustrating, particularly for a lowly graduate student like me, who needed to beg Blanche to set aside what she was doing for Steve Weinberg and devote a moment or two to working on my paper.

It was tremendously liberating when I learned to use TeX in 1990 and started typing my own papers. (Not LaTeX in those days, but Plain TeX embellished by a macro for formatting.) That was a technological advance that definitely improved my productivity. An earlier generation had felt the same way about the Xerox machine.

But as I was reminded a few days ago, while technological advances can be empowering, they can also be dangerous when used recklessly. I was editing a very long document, and decided to make a change. I had repeatedly used $x$ to denote an n-bit string, and thought it better to use $\vec x$ instead. I was walking through the paper with the replace button, changing each $x$ to $\vec x$ where the change seemed warranted. But I slipped once, and hit the “Replace All” button instead of “Replace.” My computer curtly informed me that it had made the replacement 1011 times. Oops …

This was a revocable error. There must have been a way to undo it (though it was not immediately obvious how). Or I could have closed the file without saving, losing some recent edits but limiting the damage.

But it was late at night and I was tired. I panicked, immediately saving and LaTeXing the file. It was a mess.

Okay, no problem, all I had to do was replace every \vec x with x and everything would be fine. Except that in the original replacement I had neglected to specify “Match Case.” In 264 places $X$ had become $\vec x$, and the new replacement did not restore the capitalization. It took hours to restore every $X$ by hand, and there are probably a few more that I haven’t noticed yet.

Which brings me to the cautionary tale of one of my former graduate students, Robert Navin. Rob’s thesis had two main topics, scattering off vortices and scattering off monopoles. On the night before the thesis due date, Rob made a horrifying discovery. The crux of his analysis of scattering off vortices concerned the singularity structure of a certain analytic function, and the chapter about vortices made many references to the poles of this function. What Rob realized at this late stage is that these singularities are actually branch points, not poles!

What to do? It’s late and you’re tired and your thesis is due in a few hours. Aha! Global search and replace! Rob replaced every occurrence of “pole” in his thesis by “branch point.” Problem solved.

Except … Rob had momentarily forgotten about that chapter on monopoles. Which, when I read the thesis, had been transformed into a chapter on monobranch points. His committee accepted the thesis, but requested some changes …

Rob Navin no longer does physics, but has been very successful in finance. I’m sure he’s more careful now.

Kitaev, Moore, Read share Dirac Medal!

Since its founding 30 years ago, the Dirac Medal has been one of the most prestigious honors in theoretical physics. Particle theorists and string theorists have claimed most of the medals, but occasionally other fields break through, as when Haldane, Kane, and Zhang shared the 2012 Dirac Medal for their pioneering work on topological insulators. I was excited to learn today that the 2015 Dirac Medal has been awarded to Alexei Kitaev, Greg Moore, and Nick Read “for their interdisciplinary contributions which introduced  concepts of conformal field theory and non-abelian quasiparticle statistics in condensed matter systems and  applications of these ideas to quantum computation.”

Left to right: Alexei Kitaev, Greg Moore and Nicholas Read.

Left to right: Alexei Kitaev, Greg Moore, and Nick Read.

I have written before about the exciting day in April 1997 when Alesha and I met, and I heard for the first time about the thrilling concept of a topological quantum computer. I’ll take the liberty of drawing a quote from that post, which seems particularly relevant today:

Over coffee at the Red Door Cafe that afternoon, we bonded over our shared admiration for a visionary paper by Greg Moore and Nick Read about non-abelian anyons in fractional quantum Hall systems, though neither of us fully understood the paper (and I still don’t). Maybe, we mused together, non-abelian anyons are not just a theorist’s dream … It was the beginning of a beautiful friendship.

As all physics students know, fundamental particles in three spatial dimensions come in two varieties, bosons and fermions, but in two spatial dimensions more exotic possibilities abound, dubbed “anyons” by Wilczek. Anyons have an exotic spin, a fraction of an electron’s spin, and corresponding exotic statistics — when one anyon is carried around another, their quantum state picks up a nontrivial topological phase. (I had some fun discussions with Frank Wilczek in 1981 as he was developing the theory of anyons. In some of his writings Frank has kindly credited me for suggesting to him that a robust spin-statistics connection should hold in two dimensions, so that fractional spin is necessarily accompanied by fractional statistics. The truth is that my understanding of this point was murky at best back then.) Not long after Wilczek’s paper, Bert Halperin recognized the relevance of anyons to the strange fractional quantum Hall states that had recently been discovered; these support particle-like objects carrying a fraction of the electron’s electric charge, which Halperin recognized to be anyons.

Non-abelian anyons are even more exotic. In a system with many widely separated non-abelian anyons, there are a vast number of different ways for the particles to “fuse” together, giving rise to many possible quantum states, all of which are in principle distinguishable but in practice are hard to tell apart. Furthermore, by “braiding” the anyons (performing a sequence of particle exchanges, so the world lines of the anyons trace out a braid in three-dimensional spacetime), this state can be manipulated, coherently processing the quantum information encoded in the system.

Others (including me) had mused about non-abelian anyons before Moore and Read came along, but no one had proposed a plausible story for how such exotic objects would arise in a realistic laboratory setting. As collaborators, Moore and Read complemented one another perfectly. Greg was, and is, one of the world’s leading experts on conformal field theory. Nick was, and is, one of the world’s leading experts on the fractional quantum Hall effect. Together, they realized that one of the already known fractional quantum Hall states (at filling factor 5/2) is a good candidate for a topological phase supporting non-abelian anyons. This was an inspired guess, most likely correct, though we still don’t have smoking gun experimental evidence 25 years later. Their paper is a magical and rare combination of mathematical sophistication with brilliant intuition.

Alexei arrived at his ideas about non-abelian anyons coming from a different direction, though I suspect he drew inspiration from the earlier deep contributions of Moore and Read. He was trying to imagine a physical system that could store and process a quantum state reliably. Normally quantum systems are very fragile — just looking at the system alters its state. To prevent a quantum computer from making errors, we need to isolate the information processed by the computer from the environment. A system of non-abelian anyons has just the right properties to make this possible; it carries lots of information, but the environment can’t read (or damage) that information when it looks at the particles one at a time. That’s because the information is not encoded in the individual particles, but instead in subtle collective properties shared by many particles at once.

Alexei and I had inspiring discussions about topological quantum computing when we first met at Caltech in April 1997, which continued at a meeting in Torino, Italy that summer, where we shared a bedroom. I was usually asleep by the time he came to bed, because he was staying up late, typing his paper.

Alexei did not think it important to publish his now renowned 1997 paper in a journal — he was content for the paper to be accessible on the arXiv. But after a few years I started to get worried … in my eyes Alexei was becoming an increasingly likely Nobel Prize candidate. Would it cause a problem if his most famous paper had never been published? Just to be safe, I arranged for it to appear in Annals of Physics in 2003, where I was on the editorial board at the time. Frank Wilczek, then the editor, was delighted by this submission, which has definitely boosted the journal’s impact factor! (“Fault-tolerant quantum computation by anyons” has 2633 citations as of today, according to Google Scholar.) Nobelists are ineligible for the Dirac Medal, but some past medalists have proceeded to greater glory. It could happen again, right?

Alesha and I have now been close friends and collaborators for 18 years, but I have actually known Greg and Nick even longer. I taught at Harvard for a few years in the early 1980s, at a time when an amazingly talented crew of physics graduate students roamed the halls, of whom Andy Cohen, Jacques Distler, Ben Grinstein, David Kaplan, Aneesh Manohar, Ann Nelson, and Phil Nelson among others all made indelible impressions. But there was something special about Greg. The word that comes to mind is intensity. Few students exhibit as much drive and passion for physics as Greg did in those days. He’s calmer now, but still pretty intense. I met Nick a few years later when we tried to recruit him to the Caltech faculty. Luring him to southern California turned out to be a lost cause because he didn’t know how to drive a car. I suppose he’s learned by now?* Whenever I’ve spoken to Nick in the years since then, I’ve always been dazzled by his clarity of thought.

Non-abelian anyons are at a pivotal stage, with lots of experimental hints supporting their existence, but still no ironclad evidence. I feel confident this will change in the next few years. These are exciting times!

And guess what? This occasion gives me another opportunity to dust off one of my poems!

Anyon, Anyon

Anyon, anyon, where do you roam?
Braid for a while before you go home.

Though you’re condemned just to slide on a table,
A life in 2D also means that you’re able
To be of a type neither Fermi nor Bose
And to know left from right — that’s a kick, I suppose.

You and your buddy were made in a pair
Then wandered around, braiding here, braiding there.
You’ll fuse back together when braiding is through
We’ll bid you adieu as you vanish from view.

Alexei exhibits a knack for persuading
That someday we’ll crunch quantum data by braiding,
With quantum states hidden where no one can see,
Protected from damage through top-ology.

Anyon, anyon, where do you roam?
Braid for a while, before you go home.

*Note added: Nick confirms, “Yes, I’ve had a driving license since 1992, and a car since 1994!”

20 years of qubits: the arXiv data

Editor’s Note: The preceding post on Quantum Frontiers inspired the always curious Paul Ginsparg to do some homework on usage of the word “qubit” in papers posted on the arXiv. Rather than paraphrase Paul’s observations I will quote his email verbatim, so you can experience its Ginspargian style.qubit-data

fig has total # uses of qubit in arxiv (divided by 10) per month, and
total # docs per month:
an impressive 669394 total in 29587 docs.

the graph starts at 9412 (dec '94), but that is illusory since qubit
only shows up in v2 of hep-th/9412048, posted in 2004.
the actual first was quant-ph/9503016 by bennett/divicenzo/shor et al
(posted 23 Mar '95) where they carefully attribute the term to
schumacher ("PRA, to appear '95") and jozsa/schumacher ("J. Mod Optics
'94"), followed immediately by quant-ph/9503017 by deutsch/jozsa et al
(which no longer finds it necessary to attribute term)

[neither of schumacher's first two articles is on arxiv, but otherwise
probably have on arxiv near 100% coverage of its usage and growth, so
permits a viral epidemic analysis along the lines of kaiser's "drawing
theories apart"  of use of Feynman diagrams in post wwII period].

ever late to the party, the first use by j.preskill was
quant-ph/9602016, posted 21 Feb 1996

#articles by primary subject area as follows (hep-th is surprisingly
low given the firewall connection...):

quant-ph 22096
cond-mat.mes-hall 3350
cond-mat.supr-con 880
cond-mat.str-el 376
cond-mat.mtrl-sci 250
math-ph 244
hep-th 228
physics.atom-ph 224
cond-mat.stat-mech 213
cond-mat.other 200
physics.optics 177
cond-mat.quant-gas 152
physics.gen-ph 120
gr-qc 105
cond-mat 91
cs.CC 85
cs.IT 67
cond-mat.dis-nn 55
cs.LO 49
cs.CR 43
physics.chem-ph 33
cs.ET 25
physics.ins-det 21
math.CO,nlin.CD 20
physics.hist-ph,physics.bio-ph,math.OC 19
hep-ph 18
cond-mat.soft,cs.DS,math.OA 17
cs.NE,cs.PL,math.QA 13
cs.AR,cs.OH 12
physics.comp-ph 11
math.LO 10
physics.soc-ph,physics.ed-ph,cs.AI 9
math.ST,physics.pop-ph,cs.GT 8
nlin.AO,astro-ph,cs.DC,cs.FL,q-bio.GN 7
physics.data-an 6
nlin.SI,math.CT,q-fin.GN,cs.LG,q-bio.BM,cs.DM,math.GT 5
math.DS,physics.atm-clus,q-bio.PE 4
math.RA,math.AG,astro-ph.IM,q-bio.OT 3
math.RT 2
nucl-ex 1