The importance of being open

Barcelona refused to stay indoors this May.

Merchandise spilled outside shops onto the streets, restaurateurs parked diners under trees, and ice-cream cones begged to be eaten on park benches. People thronged the streets, markets filled public squares, and the scents of flowers wafted from vendors’ stalls. I couldn’t blame the city. Its sunshine could have drawn Merlin out of his crystal cave. Insofar as a city lives, Barcelona epitomized a quotation by thermodynamicist Ilya Prigogine: “The main character of any living system is openness.”

Prigogine (1917–2003), who won the Nobel Prize for chemistry, had brought me to Barcelona. I was honored to receive, at the Joint European Thermodynamics Conference (JETC) there, the Ilya Prigogine Prize for a thermodynamics PhD thesis. The JETC convenes and awards the prize biennially; the last conference had taken place in Budapest. Barcelona suited the legacy of a thermodynamicist who illuminated open systems.

IMG_0324

The conference center. Not bad, eh?

Ilya Prigogine began his life in Russia, grew up partially in Germany, settled in Brussels, and worked at American universities. His nobelprize.org biography reveals a mind open to many influences and disciplines: Before entering university, his “interest was more focused on history and archaeology, not to mention music, especially piano.” Yet Prigogine pursued chemistry. 

He helped extend thermodynamics outside equilibrium. Thermodynamics is the study of energy, order, and time’s arrow in terms of large-scale properties, such as temperature, pressure, and volume. Many physicists think that thermodynamics describes only equilibrium. Equilibrium is a state of matter in which (1) large-scale properties remain mostly constant and (2) stuff (matter, energy, electric charge, etc.) doesn’t flow in any particular direction much. Apple pies reach equilibrium upon cooling on a countertop. When I’ve described my research as involving nonequilibrium thermodynamics, some colleagues have asked whether I’ve used an oxymoron. But “nonequilibrium thermodynamics” appears in Prigogine’s Nobel Lecture. 

Prigogine photo

Ilya Prigogine

Another Nobel laureate, Lars Onsager, helped extend thermodynamics a little outside equilibrium. He imagined poking a system gently, as by putting a pie on a lukewarm stovetop or a magnet in a weak magnetic field. (Experts: Onsager studied the linear-response regime.) You can read about his work in my blog post “Long live Yale’s cemetery.” Systems poked slightly out of equilibrium tend to return to equilibrium: Equilibrium is stable. Systems flung far from equilibrium, as Prigogine showed, can behave differently. 

A system can stay far from equilibrium by interacting with other systems. Imagine placing an apple pie atop a blistering stove. Heat will flow from the stove through the pie into the air. The pie will stay out of equilibrium due to interactions with what we call a “hot reservoir” (the stove) and a “cold reservoir” (the air). Systems (like pies) that interact with other systems (like stoves and air), we call “open.”

You and I are open: We inhale air, ingest food and drink, expel waste, and radiate heat. Matter and energy flow through us; we remain far from equilibrium. A bumper sticker in my high-school chemistry classroom encapsulated our status: “Old chemists don’t die. They come to equilibrium.” We remain far from equilibrium—alive—because our environment provides food and absorbs heat. If I’m an apple pie, the yogurt that I ate at breakfast serves as my stovetop, and the living room in which I breakfasted serves as the air above the stove. We live because of our interactions with our environments, because we’re open. Hence Prigogine’s claim, “The main character of any living system is openness.”

Apple pie

The author

JETC 2019 fostered openness. The conference sessions spanned length scales and mass scales, from quantum thermodynamics to biophysics to gravitation. One could arrive as an expert in cell membranes and learn about astrophysics.

I remain grateful for the prize-selection committee’s openness. The topics of earlier winning theses include desalination, colloidal suspensions, and falling liquid films. If you tipped those topics into a tube, swirled them around, and capped the tube with a kaleidoscope glass, you might glimpse my thesis’s topic, quantum steampunk. Also, of the nine foregoing Prigogine Prize winners, only one had earned his PhD in the US. I’m grateful for the JETC’s consideration of something completely different.

When Prigogine said, “openness,” he referred to exchanges of energy and mass. Humans can exhibit openness also to ideas. The JETC honored Prigogine’s legacy in more ways than one. Here’s hoping I live up to their example.

IMG_0349

Outside La Sagrada Familia

This entry was posted in Reflections, The expert's corner, Theoretical highlights by Nicole Yunger Halpern. Bookmark the permalink.

About Nicole Yunger Halpern

I’m a theoretical physicist at the Joint Institute for Quantum Information and Computer Science in Maryland. My research group re-envisions 19th-century thermodynamics for the 21st century, using the mathematical toolkit of quantum information theory. We then apply quantum thermodynamics as a lens through which to view the rest of science. I call this research “quantum steampunk,” after the steampunk genre of art and literature that juxtaposes Victorian settings (à la thermodynamics) with futuristic technologies (à la quantum information). For more information, check out my upcoming book Quantum Steampunk: The Physics of Yesterday’s Tomorrow. I earned my PhD at Caltech under John Preskill’s auspices; one of my life goals is to be the subject of one of his famous (if not Pullitzer-worthy) poems. Follow me on Twitter @nicoleyh11.

3 thoughts on “The importance of being open

  1. Hi Nicole,

    I found my way here doing a web search on Prigogine. I’m wondering if you might be able to clarify a question for me about his work. I’m a mechanical engineer and don’t have access to scientific papers generally and wouldn’t be able to follow his mathematics anyway. But the ideas I find fascinating. A question came up reading some posthumous articles about Prigogine’s life’s work, and I understand he was very interested in the question of how time-symmetric laws of physics and the arrow of time coexist.

    My question is this: some reviewers appear to be suggesting that Prigogine found classes of systems that pass through a “resonance singularity” and are thus truly irreversible–as opposed to the irreversibility being rooted in our ignorance (of the state of all particles in the system, for instance). I realize my terminology is probably not quite hitting the mark here, but I’ve been hard-pressed to find a clear answer on this. Here is an example of a sentence pulled from a review, “Probability emerges not from supplementary approximations made because of a lack of knowledge, but rather as a dynamical consequence of resonance singularities in nonintegrable systems.”

    In a sense I’m wondering if Prigogine found classes of systems that truly break time symmetry and cannot be “run backwards” even with perfect knowledge of their components, because these singularities are real physical states or conditions of the system that cause a momentary breakdown in rigorous predictability?

    Thank you for your time if you’re still around on this blog, and congratulations on your award!
    Best
    Michael Mark

  2. Pingback: The grand tour of quantum thermodynamics | Quantum Frontiers

Leave a Reply to space_cadet Cancel reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s