Standing back at Stanford

T-shirt 1

This T-shirt came to mind last September. I was standing in front of a large silver-colored table littered with wires, cylinders, and tubes. Greg Bentsen was pointing at components and explaining their functions. He works in Monika Schleier-Smith’s lab, as a PhD student, at Stanford.

Monika’s group manipulates rubidium atoms. A few thousand atoms sit in one of the cylinders. That cylinder contains another cylinder, an optical cavity, that contains the atoms. A mirror caps each of the cavity’s ends. Light in the cavity bounces off the mirrors.

Light bounces off your bathroom mirror similarly. But we can describe your bathroom’s light accurately with Maxwellian electrodynamics, a theory developed during the 1800s. We describe the cavity’s light with quantum electrodynamics (QED). Hence we call the lab’s set-up cavity QED.

The light interacts with the atoms, entangling with them. The entanglement imprints information about the atoms on the light. Suppose that light escaped from the cavity. Greg and friends could measure the light, then infer about the atoms’ quantum state.

A little light leaks through the mirrors, though most light bounces off. From leaked light, you can infer about the ensemble of atoms. You can’t infer about individual atoms. For example, consider an atom’s electrons. Each electron has a quantum property called a spin. We sometimes imagine the spin as an arrow that points upward or downward. Together, the electrons’ spins form the atom’s joint spin. You can tell, from leaked light, whether one atom’s spin points upward. But you can’t tell which atom’s spin points upward. You can’t see the atoms for the ensemble.

Monika’s team can. They’ve cut a hole in their cylinder. Light escapes the cavity through the hole. The light from the hole’s left-hand edge carries information about the leftmost atom, and so on. The team develops a photograph of the line of atoms. Imagine holding a photograph of a line of people. You can point to one person, and say, “Aha! She’s the xkcd fan.” Similarly, Greg and friends can point to one atom in their photograph and say, “Aha! That atom has an upward-pointing spin.” Monika’s team is developing single-site imaging.


Aha! She’s the xkcd fan.

Monika’s team plans to image atoms in such detail, they won’t need for light to leak through the mirrors. Light leakage creates problems, including by entangling the atoms with the world outside the cavity. Suppose you had to diminish the amount of light that leaks from a rubidium cavity. How should you proceed?

Tell the mirrors,

T-shirt 2

You should lengthen the cavity. Why? Imagine a photon, a particle of light, in the cavity. It zooms down the cavity’s length, hits a mirror, bounces off, retreats up the cavity’s length, hits the other mirror, and bounces off. The photon repeats this process until a mirror hit fails to generate a bounce. The mirror transmits the photon to the exterior; the photon leaks out. How can you reduce leaks? By preventing photons from hitting mirrors so often, by forcing the photons to zoom longer, by lengthening the cavity, by shifting the mirrors outward.

So Greg hinted, beside that silver-colored table in Monika’s lab. The hint struck a chord: I recognized the impulse to

T-shirt 3

The impulse had led me to Stanford.

Weeks earlier, I’d written my first paper about quantum chaos and information scrambling. I’d sat and read and calculated and read and sat and emailed and written. I needed to stand up, leave my cavity, and image my work from other perspectives.

Stanford physicists had written quantum-chaos papers I admired. So I visited, presented about my work, and talked. Patrick Hayden introduced me to a result that might help me apply my result to another problem. His group helped me simplify a mathematical expression. Monika reflected that a measurement scheme I’d proposed sounded not unreasonable for cavity QED.

And Greg led me to recognize the principle behind my visit: Sometimes, you have to

T-shirt 4

to move forward.

With gratitude to Greg, Monika, Patrick, and the rest of Monika’s and Patrick’s groups for their time, consideration, explanations, and feedback. With thanks to Patrick and Stanford’s Institute for Theoretical Physics for their hospitality.

This entry was posted in Experimental highlights, Reflections, The expert's corner by Nicole Yunger Halpern. Bookmark the permalink.

About Nicole Yunger Halpern

I'm pursuing a physics PhD with the buccaneers of Quantum Frontiers. Before moving to Caltech, I studied at Dartmouth College and the Perimeter Institute for Theoretical Physics. I apply quantum-information tools to thermodynamics and statistical mechanics (the study of heat, work, information, and time), particularly at small scales. I like my quantum information physical, my math algebraic, and my spins rotated but not stirred.

2 thoughts on “Standing back at Stanford

  1. 1. Love your posts. 2. Love your work. 3. Love thermo, non-EQ, QI. 4. Layperson, so… 5. What I can add: Can’t see the forest for the trees is, like, checking individual spins of singlets, see no pattern. But add coincidence detectors to check pairs, see correlations. Global view, see the forest–the ensemble. Local view, see only trees–the atoms. Miss the big picture. Nuff said. 6. Strike a chord, musical analogy. I have a half-thought, one note, in mind. Your idea completes my thought, I go “Aha!” Your note struck a chord. = harmonize = resonates. 7. Yes, I’m a little enamored of metaphors. 🙂

Your thoughts here.

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s