Mo’ heights mo’ challenges – Climbing mount grad school

My wife’s love of mountain hiking and my interest in quantum thermodynamics collided in Telluride, Colorado.

We spent ten days in Telluride, where I spoke at the Information Engines at the Frontiers of Nanoscale Thermodynamics workshop. Telluride is a gorgeous city surrounded by mountains and scenic trails. My wife (Hasti) and I were looking for a leisurely activity one morning. We chose hiking Bear Creek Trail, a 5.1-mile hike with a 1092-foot elevation. This would have been a reasonable choice… back home.

Telluride’s elevation is 8,750 feet (ten times that of our hometown’s). This meant there was nothing leisurely about the hike. Ill-prepared, I dragged myself up the mountain in worn runners and tight jeans. My gasps for breath reminded me how new heights (a literal one in this case) could bring unexpected challenges – A lesson I’ve encountered many times as a graduate student. 

My wife and I atop bear creek trail

I completely squandered my undergrad. One story sums it up best. I was studying for my third-year statistical mechanics final when I realized I could pass the course without writing the final. So, I didn’t write the final. After four years of similar negligence, I somehow graduated, certain I’d left academics forever. Two years later, I rediscovered my love for physics and grieved about wasting my undergraduate. I decided to try again and apply for grad school. I learned Canada had 17 Universities I could apply to with a 70 average; each one rejected me.

I was ecstatic to eventually be accepted into a master’s of math. But, the high didn’t last. Learning math and physics from popular science books and PBS videos is very different from studying for University exams. If I wanted to keep this opportunity, I had to learn how to study.

16 months later, I graduated with a 97 average and an offer to do a master’s of physics at the University of Waterloo. I would be working at the Institute for Quantum Computing (IQC), supervised by Raymond Laflamme (one of the co-founders of the field of quantum computing). My first day at IQC felt surreal. I had become an efficient student and felt ready for the IQC. But, like the bear creek trail, another height would bring another challenge. Ultimately, grad school isn’t about getting good grades; it’s about researching. Raymond (Ray) gave me my first research project, and I was dumbfounded about where to start and too insecure about asking for help.

With Ray and Jonathan Halliwell’s (professor at Imperial College London and guitarist-extraordinaire) guidance, I published my first paper and accepted a Ph.D. offer from Ray. After publishing my second paper, I thought it would be smooth sailing through my Ph.D..  Alas, I was again mistaken. It’s also not enough to solve problems others give you; you need to come up with some problems on your own. So, I tried. I spent the first 8-months of my Ph.D. pursuing a problem I came up with, and It was a complete dud. It turns out the problems also need to be worth solving. For those keeping track, this is challenge number four.

I have now finished the third year of my Ph.D. (two, if you don’t count the year I “took off” to write a textbook with Ray and superconducting-qubit experimentalist, Prof. Chris Wilson). During that time, Nicole Yunger Halpern (NIST physicist, my new co-advisor, and Quantum Frontiers blogger) introduced me to the field of quantum thermodynamics. We’ve published a paper together (related blog post and Vanier interview) and have a second on the way. Despite that, I’m still grappling with that last challenge. I have no problem finding research questions that would be fun to solve. However, I’m still not sure which ones are worth solving. But, like the other challenges, I’m hopeful I’ll figure it out.

While this lesson was inspiring, the city of Telluride inspired me the most. Telluride is at a local minimum elevation, surrounded by mountains. Meaning there is virtually nowhere to go but up. I’m hoping the same is true for me.

Building a Koi pond with Lie algebras

When I was growing up, one of my favourite places was the shabby all-you-can-eat buffet near our house. We’d walk in, my mom would approach the hostess to explain that, despite my being abnormally large for my age, I qualified for kids-eat-free, and I would peel away to stare at the Koi pond. The display of different fish rolling over one another was bewitching. Ten-year-old me would have been giddy to build my own Koi pond, and now I finally have. However, I built one using Lie algebras.

The different fish swimming in the Koi pond are, in many ways, like charges being exchanged between subsystems. A “charge” is any globally conserved quantity. Examples of charges include energy, particles, electric charge, or angular momentum. Consider a system consisting of a cup of coffee in your office. The coffee will dynamically exchange charges with your office in the form of heat energy. Still, the total energy of the coffee and office is conserved (assuming your office walls are really well insulated). In this example, we had one type of charge (heat energy) and two subsystems (coffee and office). Consider now a closed system consisting of many subsystems and many different types of charges. The closed system is like the finite Koi pond with different charges like the different fish species. The charges can move around locally, but the total number of charges is globally fixed, like how the fish swim around but can’t escape the pond. Also, the presence of one type of charge can alter another’s movement, just as a big fish might block a little one’s path. 

Unfortunately, the Koi pond analogy reaches its limit when we move to quantum charges. Classically, charges commute. This means that we can simultaneously determine the amount of each charge in our system at each given moment. In quantum mechanics, this isn’t necessarily true. In other words, classically, I can count the number of glossy fish and matt fish. But, in quantum mechanics, I can’t.

So why does this matter? Subsystems exchanging charges are prevalent in thermodynamics. Quantum thermodynamics extends thermodynamics to include small systems and quantum effects. Noncommutation underlies many important quantum phenomena. Hence, studying the exchange of noncommuting charges is pivotal in understanding quantum thermodynamics. Consequently, noncommuting charges have emerged as a rapidly growing subfield of quantum thermodynamics. Many interesting results have been discovered from no longer assuming that charges commute (such as these). Until recently, most of these discoveries have been theoretical. Bridging these discoveries to experimental reality requires Hamiltonians (functions that tell you how your system evolves in time) that move charges locally but conserve them globally. Last year it was unknown whether these Hamiltonians exist, what they look like generally, how to build them, and for what charges you could find them.

Nicole Yunger Halpern (NIST physicist, my co-advisor, and Quantum Frontiers blogger) and I developed a prescription for building Koi ponds for noncommuting charges. Our prescription allows you to systematically build Hamiltonians that overtly move noncommuting charges between subsystems while conserving the charges globally. These Hamiltonians are built using Lie algebras, abstract mathematical tools that can describe many physical quantities (including everything in the standard model of particle physics and space-time metric). Our results were recently published in npj QI. We hope that our prescription will bolster the efforts to bridge the results of noncommuting charges to experimental reality.

In the end, a little group theory was all I needed for my Koi pond. Maybe I’ll build a treehouse next with calculus or a remote control car with combinatorics.