Peeking into the world of quantum intelligence

Intelligent beings have the ability to receive, process, store information, and based on the processed information, predict what would happen in the future and act accordingly.

An illustration of receiving, processing, and storing information. Based on the processed information, one can make prediction about the future.
[Credit: Claudia Cheng]

We, as intelligent beings, receive, process, and store classical information. The information comes from vision, hearing, smell, and tactile sensing. The data is encoded as analog classical information through the electrical pulses sending through our nerve fibers. Our brain processes this information classically through neural circuits (at least that is our current understanding, but one should check out this blogpost). We then store this processed classical information in our hippocampus that allows us to retrieve it later to combine it with future information that we obtain. Finally, we use the stored classical information to make predictions about the future (imagine/predict the future outcomes if we perform certain action) and choose the action that would most likely be in our favor.

Such abilities have enabled us to make remarkable accomplishments: soaring in the sky by constructing accurate models of how air flows around objects, or building weak forms of intelligent beings capable of performing basic conversations and play different board games. Instead of receiving/processing/storing classical information, one could imagine some form of quantum intelligence that deals with quantum information instead of classical information. These quantum beings can receive quantum information through quantum sensors built up from tiny photons and atoms. They would then process this quantum information with quantum mechanical evolutions (such as quantum computers), and store the processed qubits in a quantum memory (protected with a surface code or toric code).

A caricature of human intelligence dating long before 1950, artificial intelligence that began in the 50’s, and the emergence of quantum intelligence.
[Credit: Claudia Cheng]

It is natural to wonder what a world of quantum intelligence would be like. While we have never encountered such a strange creature in the real world (yet), the mathematics of quantum mechanics, machine learning, and information theory allow us to peek into what such a fantastic world would be like. The physical world we live in is intrinsically quantum. So one may imagine that a quantum being is capable of making more powerful predictions than a classical being. Maybe he/she/they could better predict events that happened further away, such as tell us how a distant black hole was engulfing another? Or perhaps he/she/they could improve our lives, for example by presenting us with an entirely new approach for capturing energy from sunlight?

One may be skeptical about finding quantum intelligent beings in nature (and rightfully so). But it may not be so absurd to synthesize a weak form of quantum (artificial) intelligence in an experimental lab, or enhance our classical human intelligence with quantum devices to approximate a quantum-mechanical being. Many famous companies, like Google, IBM, Microsoft, and Amazon, as well as many academic labs and startups have been building better quantum machines/computers day by day. By combining the concepts of machine learning on classical computers with these quantum machines, the future of us interacting with some form of quantum (artificial) intelligence may not be so distant.

Before the day comes, could we peek into the world of quantum intelligence? And could one better understand how much more powerful they could be over classical intelligence?

A cartoon depiction of me (Left), Richard Kueng (Middle), and John Preskill (Right).
[Credit: Claudia Cheng]

In a recent publication [1], my advisor John Preskill, my good friend Richard Kueng, and I made some progress toward these questions. We consider a quantum mechanical world where classical beings could obtain classical information by measuring the world (performing POVM measurement). In contrast, quantum beings could retrieve quantum information through quantum sensors and store the data in a quantum memory. We study how much better quantum over classical beings could learn from the physical world to accurately predict the outcomes of unseen events (with the focus on the number of interactions with the physical world instead of computation time). We cast these problems in a rigorous mathematical framework and utilize high-dimensional probability and quantum information theory to understand their respective prediction power. Rigorously, one refers to a classical/quantum being as a classical/quantum model, algorithm, protocol, or procedure. This is because the actions of these classical/quantum beings are the center of the mathematical analysis.

Formally, we consider the task of learning an unknown physical evolution described by a CPTP map \mathcal{E} that takes in n-qubit state and maps to m-qubit state. The classical model can select an arbitrary classical input to the CPTP map and measure the output state of the CPTP map with some POVM measurement. The quantum model can access the CPTP map coherently and obtain quantum data from each access, which is equivalent to composing multiple CPTP maps with quantum computations to learn about the CPTP map. The task is to predict a property of the output state \mathcal{E}(\lvert x \rangle\!\langle x \rvert), given by \mathrm{Tr}(O \mathcal{E}(\lvert x \rangle\!\langle x \rvert)), for a new classical input x \in \{0, 1\}^n. And the goal is to achieve the task while accessing \mathcal{E} as few times as possible (i.e., fewer interactions or experiments in the physical world). We denote the number of interactions needed by classical and quantum models as N_{\mathrm{C}}, N_{\mathrm{Q}}.

In general, quantum models could learn from fewer interactions with the physical world (or experiments in the physical world) than classical models. This is because coherent quantum information can facilitate better information synthesis with information obtained from previous experiments. Nevertheless, in [1], we show that there is a fundamental limit to how much more efficient quantum models can be. In order to achieve a prediction error

\mathbb{E}_{x \sim \mathcal{D}} |h(x) -  \mathrm{Tr}(O \mathcal{E}(\lvert x \rangle\!\langle x \rvert))| \leq \mathcal{O}(\epsilon),

where h(x) is the hypothesis learned from the classical/quantum model and \mathcal{D} is an arbitrary distribution over the input space \{0, 1\}^n, we found that the speed-up N_{\mathrm{C}} / N_{\mathrm{Q}} is upper bounded by m / \epsilon, where m > 0 is the number of qubits each experiment provides (the output number of qubits in the CPTP map \mathcal{E}), and \epsilon > 0 is the desired prediction error (smaller \epsilon means we want to predict more accurately).

In contrast, when we want to accurately predict all unseen events, we prove that quantum models could use exponentially fewer experiments than classical models. We give a construction for predicting properties of quantum systems showing that quantum models could substantially outperform classical models. These rigorous results show that quantum intelligence shines when we seek stronger prediction performance.

We have only scratched the surface of what is possible with quantum intelligence. As the future unfolds, I am hopeful that we will discover more that can be done only by quantum intelligence, through mathematical analysis, rigorous numerical studies, and physical experiments.

Further information:

  • A classical model that can be used to accurately predict properties of quantum systems is the classical shadow formalism [2] that we proposed a year ago. In many tasks, this model can be shown to be one of the strongest rivals that quantum models have to surpass.
  • Even if a quantum model only receives and stores classical data, the ability to process the data using a quantum-mechanical evolution can still be advantageous [3]. However, obtaining large advantage will be harder in this case as the computational power in data can slightly boost classical machines/intelligence [3].
  • Another nice paper by Dorit Aharonov, Jordan Cotler, and Xiao-Liang Qi [4] also proved advantages of quantum models over classical one in some classification tasks.

References:

[1] Huang, Hsin-Yuan, Richard Kueng, and John Preskill. “Information-Theoretic Bounds on Quantum Advantage in Machine Learning.” Physical Review Letters 126: 190505 (2021). https://doi.org/10.1103/PhysRevLett.126.190505

[2] Huang, Hsin-Yuan, Richard Kueng, and John Preskill. “Predicting many properties of a quantum system from very few measurements.” Nature Physics 16: 1050-1057 (2020). https://doi.org/10.1038/s41567-020-0932-7

[3] Huang, Hsin-Yuan, et al. “Power of data in quantum machine learning.” Nature communications 12.1 (2021): 1-9. https://doi.org/10.1038/s41467-021-22539-9

[4] Aharonov, Dorit, Jordan Cotler, and Xiao-Liang Qi. “Quantum Algorithmic Measurement.” arXiv preprint arXiv:2101.04634 (2021).

Learning about learning

The autumn of my sophomore year of college was mildly hellish. I took the equivalent of three semester-long computer-science and physics courses, atop other classwork; co-led a public-speaking self-help group; and coordinated a celebrity visit to campus. I lived at my desk and in office hours, always declining my flatmates’ invitations to watch The West Wing

Hard as I studied, my classmates enjoyed greater facility with the computer-science curriculum. They saw immediately how long an algorithm would run, while I hesitated and then computed the run time step by step. I felt behind. So I protested when my professor said, “You’re good at this.” 

I now see that we were focusing on different facets of learning. I rued my lack of intuition. My classmates had gained intuition by exploring computer science in high school, then slow-cooking their experiences on a mental back burner. Their long-term exposure to the material provided familiarity—the ability to recognize a new problem as belonging to a class they’d seen examples of. I was cooking course material in a mental microwave set on “high,” as a semester’s worth of material was crammed into ten weeks at my college.

My professor wasn’t measuring my intuition. He only saw that I knew how to compute an algorithm’s run time. I’d learned the material required of me—more than I realized, being distracted by what I hadn’t learned that difficult autumn.

We can learn a staggering amount when pushed far from our comfort zones—and not only we humans can. So can simple collections of particles.

Examples include a classical spin glass. A spin glass is a collection of particles that shares some properties with a magnet. Both a magnet and a spin glass consist of tiny mini-magnets called spins. Although I’ve blogged about quantum spins before, I’ll focus on classical spins here. We can imagine a classical spin as a little arrow that points upward or downward.  A bunch of spins can form a material. If the spins tend to point in the same direction, the material may be a magnet of the sort that’s sticking the faded photo of Fluffy to your fridge.

The spins may interact with each other, similarly to how electrons interact with each other. Not entirely similarly, though—electrons push each other away. In contrast, a spin may coax its neighbors into aligning or anti-aligning with it. Suppose that the interactions are random: Any given spin may force one neighbor into alignment, gently ask another neighbor to align, entreat a third neighbor to anti-align, and having nothing to say to neighbors four and five.

The spin glass can interact with the external world in two ways. First, we can stick the spins in a magnetic field, as by placing magnets above and below the glass. If aligned with the field, a spin has negative energy; and, if antialigned, positive energy. We can sculpt the field so that it varies across the spin glass. For instance, spin 1 can experience a strong upward-pointing field, while spin 2 experiences a weak downward-pointing field.

Second, say that the spins occupy a fixed-temperature environment, as I occupy a 74-degree-Fahrenheit living room. The spins can exchange heat with the environment. If releasing heat to the environment, a spin flips from having positive energy to having negative—from antialigning with the field to aligning.

Let’s perform an experiment on the spins. First, we design a magnetic field using random numbers. Whether the field points upward or downward at any given spin is random, as is the strength of the field experienced by each spin. We sculpt three of these random fields and call the trio a drive.

Let’s randomly select a field from the drive and apply it to the spin glass for a while; again, randomly select a field from the drive and apply it; and continue many times. The energy absorbed by the spins from the fields spikes, then declines.

Now, let’s create another drive of three random fields. We’ll randomly pick a field from this drive and apply it; again, randomly pick a field from this drive and apply it; and so on. Again, the energy absorbed by the spins spikes, then tails off.

Here comes the punchline. Let’s return to applying the initial fields. The energy absorbed by the glass will spike—but not as high as before. The glass responds differently to a familiar drive than to a new drive. The spin glass recognizes the original drive—has learned the first fields’ “fingerprint.” This learning happens when the fields push the glass far from equilibrium,1 as I learned when pushed during my mildly hellish autumn.

So spin glasses learn drives that push them far from equilibrium. So do many other simple, classical, many-particle systems: polymers, viscous liquids, crumpled sheets of Mylar, and more. Researchers have predicted such learning and observed it experimentally. 

Scientists have detected many-particle learning by measuring thermodynamic observables. Examples include the energy absorbed by the spin glass—what thermodynamicists call work. But thermodynamics developed during the 1800s, to describe equilibrium systems, not to study learning. 

One study of learning—the study of machine learning—has boomed over the past two decades. As described by the MIT Technology Review, “[m]achine-learning algorithms use statistics to find patterns in massive amounts of data.” Users don’t tell the algorithms how to find those patterns.

xkcd.com/1838

It seems natural and fitting to use machine learning to learn about the learning by many-particle systems. That’s what I did with collaborators from the group of Jeremy England, a GlaxoSmithKline physicist who studies complex behaviors of many particle systems. Weishun Zhong, Jacob Gold, Sarah Marzen, Jeremy, and I published our paper last month. 

Using machine learning, we detected and measured many-particle learning more reliably and precisely than thermodynamic measures seem able to. Our technique works on multiple facets of learning, analogous to the intuition and the computational ability I encountered in my computer-science course. We illustrated our technique on a spin glass, but one can apply our approach to other systems, too. I’m exploring such applications with collaborators at the University of Maryland.

The project pushed me far from my equilibrium: I’d never worked with machine learning or many-body learning. But it’s amazing, what we can learn when pushed far from equilibrium. I first encountered this insight sophomore fall of college—and now, we can quantify it better than ever.

1Equilibrium is a quiet, restful state in which the glass’s large-scale properties change little. No net flow of anything—such as heat or particles—enter or leave the system.

One if by land minus two if by sea, over the square-root of two

Happy National Poetry Month! The United States salutes word and whimsy in April, and Quantum Frontiers is continuing its tradition of celebrating. As a resident of Cambridge, Massachusetts and as a quantum information scientist, I have trouble avoiding the poem “Paul Revere’s Ride.” 

Henry Wadsworth Longfellow wrote the poem, as well as others in the American canon, during the 1800s. Longfellow taught at Harvard in Cambridge, and he lived a few blocks away from the university, in what’s now a national historic site. Across the street from the house, a bust of the poet gazes downward, as though lost in thought, in Longfellow Park. Longfellow wrote one of his most famous poems about an event staged a short drive from—and, arguably, partially in—Cambridge.

Longfellow Park

The event took place “on the eighteenth of April, in [Seventeen] Seventy-Five,” as related by the narrator of “Paul Revere’s Ride.” Revere was a Boston silversmith and a supporter of the American colonies’ independence from Britain. Revolutionaries anticipated that British troops would set out from Boston sometime during the spring. The British planned to seize revolutionaries’ weapons in the nearby town of Concord and to jail revolutionary leaders in Lexington. The troops departed Boston during the night of April 18th. 

Upon learning of their movements, sexton Robert Newman sent a signal from Boston’s old North Church to Charlestown. Revere and the physician William Dawes rode out from Charlestown to warn the people of Lexington and the surrounding areas. A line of artificial hoof prints, pressed into a sidewalk a few minutes from the Longfellow house, marks part of Dawes’s trail through Cambridge. The initial riders galvanized more riders, who stirred up colonial militias that resisted the troops’ advance. The Battles of Lexington and Concord ensued, initiating the Revolutionary War.

Longfellow took liberties with the facts he purported to relate. But “Paul Revere’s Ride” has blown the dust off history books for generations of schoolchildren. The reader shares Revere’s nervous excitement as he fidgets, awaiting Newman’s signal: 

Now he patted his horse’s side, 
Now gazed on the landscape far and near, 
Then impetuous stamped the earth, 
And turned and tightened his saddle-girth;
But mostly he watched with eager search 
The belfry-tower of the old North Church.

The moment the signal arrives, that excitement bursts its seams, and Revere leaps astride his horse. The reader comes to gallop through with the silversmith the night, the poem’s clip-clop-clip-clop rhythm evoking a horse’s hooves on cobblestones.

The author, outside Longfellow House, on the eighteenth of April in…Twenty Twenty.

Not only does “Paul Revere’s Ride” revitalize history, but it also offers a lesson in information theory. While laying plans, Revere instructs Newman: 

He said to his friend, “If the British march
By land or sea from the town to-night,
Hang a lantern aloft in the belfry-arch
Of the North-Church-tower, as a signal light.

Then comes one of the poem’s most famous lines: “One if by land, and two if by sea.” The British could have left Boston by foot or by boat, and Newman had to communicate which. Specifying one of two options, he related one bit, or one basic unit of information. Newman thereby exemplifies a cornerstone of information theory: the encoding of a bit of information—an abstraction—in a physical system that can be in one of two possible states—a light that shines from one or two lanterns.

Benjamin Schumacher and Michael Westmoreland point out the information-theoretic interpretation of Newman’s action in their quantum-information textbook. I used their textbook in my first quantum-information course, as a senior in college. Before reading the book, I’d never felt that I could explain what information is or how it can be quantified. Information is an abstraction and a Big Idea, like consciousness, life, and piety. But, Schumacher and Westmoreland demonstrated, most readers already grasp the basics of information theory; some readers even studied the basics while memorizing a poem in elementary school. So I doff my hat—or, since we’re discussing the 1700s, my mobcap—to the authors.

Reading poetry enriches us more than we realize. So read a poem this April. You can find Longfellow’s poem here or ride off wherever your fancy takes you.  

Project Ant-Man

The craziest challenge I’ve undertaken hasn’t been skydiving; sailing the Amazon on a homemade raft; scaling Mt. Everest; or digging for artifacts atop a hill in a Middle Eastern desert, near midday, during high summer.1 The craziest challenge has been to study the possibility that quantum phenomena affect cognition significantly. 

Most physicists agree that quantum phenomena probably don’t affect cognition significantly. Cognition occurs in biological systems, which have high temperatures, many particles, and watery components. Such conditions quash entanglement (a relationship that quantum particles can share and that can produce correlations stronger than any produceable by classical particles). 

Yet Matthew Fisher, a condensed-matter physicist, proposed a mechanism by which entanglement might enhance coordinated neuron firing. Phosphorus nuclei have spins (quantum properties similar to angular momentum) that might store quantum information for long times when in Posner molecules. These molecules may protect the information from decoherence (leaking quantum information to the environment), via mechanisms that Fisher described.

I can’t check how correct Fisher’s proposal is; I’m not a biochemist. But I’m a quantum information theorist. So I can identify how Posners could process quantum information if Fisher were correct. I undertook this task with my colleague Elizabeth Crosson, during my PhD

Experimentalists have begun testing elements of Fisher’s proposal. What if, years down the road, they find that Posners exist in biofluids and protect quantum information for long times? We’ll need to test whether Posners can share entanglement. But detecting entanglement tends to require control finer than you can exert with a stirring rod. How could you check whether a beakerful of particles contains entanglement?

I asked that question of Adam Bene Watts, a PhD student at MIT, and John Wright, then an MIT postdoc and now an assistant professor in Texas. John gave our project its codename. At a meeting one day, he reported that he’d watched the film Avengers: Endgame. Had I seen it? he asked.

No, I replied. The only superhero movie I’d seen recently had been Ant-Man and the Wasp—and that because, according to the film’s scientific advisor, the movie riffed on research of mine. 

Go on, said John.

Spiros Michalakis, the Caltech mathematician in charge of this blog, served as the advisor. The film came out during my PhD; during a meeting of our research group, Spiros advised me to watch the movie. There was something in it “for you,” he said. “And you,” he added, turning to Elizabeth. I obeyed, to hear Laurence Fishburne’s character tell Ant-Man that another character had entangled with the Posner molecules in Ant-Man’s brain.2 

John insisted on calling our research Project Ant-Man.

John and Adam study Bell tests. Bell test sounds like a means of checking whether the collar worn by your cat still jingles. But the test owes its name to John Stewart Bell, a Northern Irish physicist who wrote a groundbreaking paper in 1964

Say you’d like to check whether two particles share entanglement. You can run an experiment, described by Bell, on them. The experiment ends with a measurement of the particles. You repeat this experiment in many trials, using identical copies of the particles in subsequent trials. You accumulate many measurement outcomes, whose statistics you calculate. You plug those statistics into a formula concocted by Bell. If the result exceeds some number that Bell calculated, the particles shared entanglement.

We needed a variation on Bell’s test. In our experiment, every trial would involve hordes of particles. The experimentalists—large, clumsy, classical beings that they are—couldn’t measure the particles individually. The experimentalists could record only aggregate properties, such as the intensity of the phosphorescence emitted by a test tube.

Adam, MIT physicist Aram Harrow, and I concocted such a Bell test, with help from John. Physical Review A published our paper this month—as a Letter and an Editor’s Suggestion, I’m delighted to report.

For experts: The trick was to make the Bell correlation function nonlinear in the state. We assumed that the particles shared mostly pairwise correlations, though our Bell inequality can accommodate small aberrations. Alas, no one can guarantee that particles share only mostly pairwise correlations. Violating our Bell inequality therefore doesn’t rule out hidden-variables theories. Under reasonable assumptions, though, a not-completely-paranoid experimentalist can check for entanglement using our test. 

One can run our macroscopic Bell test on photons, using present-day technology. But we’re more eager to use the test to characterize lesser-known entities. For instance, we sketched an application to Posner molecules. Detecting entanglement in chemical systems will require more thought, as well as many headaches for experimentalists. But our paper broaches the cask—which I hope to see flow in the next Ant-Man film. Due to debut in 2022, the movie has the subtitle Quantumania. Sounds almost as crazy as studying the possibility that quantum phenomena affect cognition.

1Of those options, I’ve undertaken only the last.

2In case of any confusion: We don’t know that anyone’s brain contains Posner molecules. The movie features speculative fiction.

Random walks

A college professor of mine proposed a restaurant venture to our class. He taught statistical mechanics, the physics of many-particle systems. Examples range from airplane fuel to ice cubes to primordial soup. Such systems contain 1024 particles each—so many particles that we couldn’t track them all if we tried. We can gather only a little information about the particles, so their actions look random.

So does a drunkard’s walk. Imagine a college student who (outside of the pandemic) has stayed out an hour too late and accepted one too many red plastic cups. He’s arrived halfway down a sidewalk, where he’s clutching a lamppost, en route home. Each step has a 50% chance of carrying him leftward and a 50% chance of carrying him rightward. This scenario repeats itself every Friday. On average, five minutes after arriving at the lamppost, he’s back at the lamppost. But, if we wait for a time T, we have a decent chance of finding him a distance \sqrt{T} away. These characteristic typify a simple random walk.

Random walks crop up across statistical physics. For instance, consider a grain of pollen dropped onto a thin film of water. The water molecules buffet the grain, which random-walks across the film. Robert Brown observed this walk in 1827, so we call it Brownian motion. Or consider a magnet at room temperature. The magnet’s constituents don’t walk across the surface, but they orient themselves according random-walk mathematics. And, in quantum many-particle systems, information can spread via a random walk. 

So, my statistical-mechanics professor said, someone should open a restaurant near MIT. Serve lo mein and Peking duck, and call the restaurant the Random Wok.

This is the professor who, years later, confronted another alumna and me at a snack buffet.

“You know what this is?” he asked, waving a pastry in front of us. We stared for a moment, concluded that the obvious answer wouldn’t suffice, and shook our heads.

“A brownie in motion!”

Not only pollen grains undergo Brownian motion, and not only drunkards undergo random walks. Many people random-walk to their careers, trying out and discarding alternatives en route. We may think that we know our destination, but we collide with a water molecule and change course.

Such is the thrust of Random Walks, a podcast to which I contributed an interview last month. Abhigyan Ray, an undergraduate in Mumbai, created the podcast. Courses, he thought, acquaint us only with the successes in science. Stereotypes cast scientists as lone geniuses working in closed offices and silent labs. He resolved to spotlight the collaborations, the wrong turns, the lessons learned the hard way—the random walks—of science. Interviewees range from a Microsoft researcher to a Harvard computer scientist to a neurobiology professor to a genomicist.

You can find my episode on Instagram, Apple Podcasts, Google Podcasts, and Spotify. We discuss the bridging of disciplines; the usefulness of a liberal-arts education in physics; Quantum Frontiers; and the delights of poking fun at my PhD advisor, fellow blogger and Institute for Quantum Information and Matter director John Preskill

The Grand Tour of quantum thermodynamics

Young noblemen used to undertake a “Grand Tour” during the 1600s and 1700s. Many of the tourists hailed from England, though well-to-do compatriots traveled from Scandinavia, Germany, and the United States. The men had just graduated from university—in many cases, Oxford or Cambridge. They’d studied classical history, language, and literature; and now, they’d experience what they’d read. Tourists flocked to Rome, Venice, and Florence, as well as to Paris; optional additions included Naples, Switzerland, Germany, and the Netherlands.

Tutors accompanied the tourists, guiding their charges across Europe. The tutors rounded out the young men’s education, instructing them in art, music, architecture, and continental society. I felt like those tutors, this month and last.1

I’m the one in the awkward-looking pose on the left.

I was lecturing in a quantum-thermodynamics mini course, with fellow postdoctoral scholar Matteo Lostaglio. Gabriel Landi, a professor of theoretical physics at the University of São Paolo in Brazil, organized the course. It targeted early-stage graduate students, who’d mastered the core of physics and who wished to immerse in quantum thermodynamics. But the enrollment ranged from PhD and Masters students to undergraduates, postdocs, faculty members, and industry employees.

The course toured quantum thermodynamics similarly to how young noblemen toured Europe. I imagine quantum thermodynamics as a landscape—one inked on a parchment map, with blue whorls representing the sea and with a dragon breathing fire in one corner. Quantum thermodynamics encompasses many communities whose perspectives differ and who wield different mathematical and conceptual tools. These communities translate into city-states, principalities, republics, and other settlements on the map. The class couldn’t visit every city, just as Grand Tourists couldn’t. But tourists had a leg up on us in their time budgets: A Grand Tour lasted months or years, whereas we presented nine hour-and-a-half lectures.

Attendees in Stuttgart

Grand Tourists returned home with trinkets, books, paintings, and ancient artifacts. I like to imagine that the tutors, too, acquired souvenirs. Here are four of my favorite takeaways from the course:

1) Most captivating subfield that I waded into for the course: Thermodynamic uncertainty relations. Researchers have derived these inequalities using nonequilibrium statistical mechanics, a field that encompasses molecular motors, nanorobots, and single strands of DNA. Despite the name “uncertainty relations,” classical and quantum systems obey these inequalities.

Imagine a small system interacting with big systems that have different temperatures and different concentrations of particles. Energy and particles hop between the systems, dissipating entropy (\Sigma) and forming currents. The currents change in time, due to the probabilistic nature of statistical mechanics. 

How much does a current vary, relative to its average value, \langle J \rangle? We quantify this variation with the relative variance, {\rm var}(J) / \langle J \rangle^2. Say that you want a low-variance, predictable current. You’ll have to pay a high entropy cost: \frac{ {\rm var} (J) }{\langle J \rangle^2 } \geq  \frac{2 k_{\rm B} }{\Sigma}, wherein k_{\rm B} denotes Boltzmann’s constant. 

Thermodynamic uncertainty relations govern systems arbitrarily far from equilibrium. We know loads about systems at equilibrium, in which large-scale properties remain approximately constant and no net flows (such as flows of particles) enter or leave the system. We know much about systems close to equilibrium. The regime arbitrarily far from equilibrium is the Wild, Wild West of statistical mechanics. Proving anything about this regime tends to require assumptions and specific models, to say nothing of buckets of work. But thermodynamic uncertainty relations are general, governing classical and quantum systems from molecular motors to quantum dots.

Multiple cats attended our mini course, according to the selfies we received.

2) Most unexpected question: During lecture one, I suggested readings that introduce quantum thermodynamics. The suggestions included two reviews and the article I wrote for Scientific American about quantum steampunk, my angle on quantum thermodynamics. The next day, a participant requested recommendations of steampunk novels. I’d prepared more for requests for justifications of the steps in my derivations. But I forwarded a suggestion given to me twice: The Difference Engine, by William Gibson and Bruce Sterling.

3) Most insightful observation: My fellow tutor—I mean lecturer—pointed out how quantum thermodynamics doesn’t and does diverge from classical thermodynamics. Quantum systems can’t break the second law of thermodynamics, as classical systems can’t. Quantum engines can’t operate more efficiently than Carnot’s engine. Erasing information costs work, regardless of whether the information-bearing degree of freedom is classical or quantum. So broad results about quantum thermodynamics coincide with broad results about classical thermodynamics. We can find discrepancies by focusing on specific physical systems, such as a spring that can be classical or quantum.  

4) Most staggering numbers: Unlike undertaking a Grand Tour, participating in the mini course cost nothing. We invited everyone across the world to join, and 420 participants from 48 countries enrolled. I learned of the final enrollment days before the course began, scrolling through the spreadsheet of participants. Motivated as I had been to double-check my lecture notes, the number spurred my determination like steel on a horse’s flanks.

The Grand Tour gave rise to travelogues and guidebooks read by tourists across the centuries: Mark Twain has entertained readers—partially at his own expense—since 1869 in the memoir The Innocents Abroad. British characters in the 1908 novel A Room with a View diverge in their views of Baedeker’s Handbook to Northern Italy. Our course material, and videos of the lectures, remain online and available to everyone for free. You’re welcome to pack your trunk, fetch your cloak, and join the trip.

A screenshot from the final lecture

1In addition to guiding their wards, tutors kept the young men out of trouble—and one can only imagine what trouble wealthy young men indulged in the year after college. I didn’t share that responsibility.

Seven reasons why I chose to do science in the government

When I was in college, people asked me what I wanted to do with my life. I’d answer, “I want to be of use and to learn always.” The question resurfaced in grad school and at the beginning of my postdoc. I answered that I wanted to do extraordinary science that I’d steer. Academia attracted me most, but I wouldn’t discount alternatives.

Last spring, I accepted an offer to build my research group as a member of NIST, the National Institute for Standards and Technology in the U.S. government. My group will be headquartered on the University of Maryland campus, nestled amongst quantum and interdisciplinary institutes. I’m grateful to be joining NIST, and I’m surprised. I never envisioned myself working for the government. I could have accepted an assistant professorship (and I was extremely grateful for the offers), but NIST swept me off my feet. Here are seven reasons why, for other early-career researchers contemplating possibilities.

1) The science. One event illustrates this reason: The notice of my job offer came from NIST Maryland’s friendly neighborhood Nobel laureate. NIST and the university invested in quantum science years before everyone and her uncle began scrambling to create a quantum institute. That investment has flowered, including in reason (2).

2) The research environment. I wouldn’t say that I have a love affair with the University of Maryland. But I’ve found myself visiting every few years (sometimes blogging about the experience). Why? Much of the quantum community passes through Maryland. Seminars fill the week, visitors fill many offices, and conferences happen once or twice a year. Theorists and experimentalists mingle over lunch and collaborate. 

The university shares two quantum institutes with NIST: QuICS (the Joint Center for Quantum Information and Computer Science) and the JQI (the Joint Quantum Institute). My group will be based at the former and affiliated with the latter. We’ll also belong to IPST (the university’s Institute for Physical Science and Technology), a hub for interdisciplinarity and thermodynamics. When visiting a university, I ask how much researchers collaborate across department lines. I usually hear an answer along the lines of “We value interdisciplinarity, and we wish that we had more of it, but we don’t have much.” Few universities ingrain interdisciplinarity into their bones by dedicating institutes to it.

Maryland’s quantum community and thermodynamics communities bustle and produce. They grant NIST researchers an academic environment, independence to shape their research paths, and the freedom to participate in the broader scientific community. If weary of the three institutes mentioned above, one can explore the university’s Quantum Technology Center and Condensed-Matter-Theory Center

3) The people. The first Maryland quantum researcher I met was the friendly neighborhood Nobel laureate, Bill Phillips. Bill was presenting a keynote address at Dartmouth College’s physics department, where I’d earned my Bachelors. Bill said that he’d attended a small liberal-arts college before pursuing his PhD at MIT. During the question-and-answer session, I welcomed him back to a small liberal-arts college. How, I asked, had he benefited from the liberal arts? Juniata College, Bill said, had made him a good person. MIT had helped make him a good scientist. Since then, I’ve kept in occasional contact with Bill, we’ve attended talks of each other’s, and I’ve watched him exhibit the most curiosity I’ve seen in almost anyone. What more could one wish for in a colleague?

An equality used across thermodynamics bears Chris Jarzynski’s last name, but he never calls the equality what everyone else does. I benefited from Chris’s mentorship during my PhD, despite our working on opposite sides of the country. His awards include not only membership in the National Academy of Sciences, but also an Outstanding Referee designation, for reviewing so many journal submissions in service to the scientific community. Chris calls IPST, the university’s interdisciplinary and thermodynamic institute, his intellectual home. That recommendation suffices for me.

I’ve looked up to Alexey Gorshkov since beginning my PhD. I keep an eye out for Mohammad Hafezi’s and Pratyush Tiwari’s papers. A quantum researcher couldn’t ignore Chris Monroe’s papers if she tried. Postdoctoral and graduate fellowships stock the community with energetic young researchers. Three energetic researchers are joining QuICS as senior Fellows around the time I am. I’ll spare you the rest of my sources of inspiration.

4) The teaching. Most faculty members at R1 research universities teach two to three courses per year. NIST members can teach once every other year. I value teaching and appreciate how teaching benefits not only students, but also instructors. I respect teachers and remain grateful for their influence. I’m grateful to have received reports that I teach well. Because I’ve acquired some skill at communicating, people tend to assume that I adore teaching. I adore presenting talks, but I don’t feel a calling to teach. Mentors have exhorted me to pursue what excites me most and what only I can accomplish. I feel called to do research and to mentor younger researchers. 

Furthermore, if I had to teach much, I wouldn’t have time for writing anything other than papers or grants, such as blog posts. Some of you readers have astonished me with accounts of what my writing means to you. You’ve approached me at conferences, buttonholed me after seminars, and emailed. I’m grateful (as I keep saying, but I mean what I say) for the opportunity to touch lives across the world. I hope to inspire students to take quantum, information-theory, and thermodynamics courses (including the quantum-thermodynamics course that I’d like to teach occasionally). Instructors teach quantum courses throughout the world. No one else writes about Egyptian sarcophagi and the second law of thermodynamics, to my knowledge, or the Russian writer Alexander Pushkin and reproductive science. Perhaps no one should. But, since no one else does, I have to.1

5) The funding. Faculty members complain that they do little apart from applying for grants. Grants fund students, postdocs, travel, summer salaries, equipment, visitors, and workshops. NIST provides primary investigators with research funding every year. Not all the funding that some groups need, but enough to free up time to undertake the research that primary investigators love.

6) The lack of tenure stress. Many junior faculty members fear that they won’t achieve tenure. The fear pushes them away from taking risks in their research programs. This month, I embarked upon a risk that I know I should take but that, had I been facing an assistant professorship, would have given me pause.

7) The acronyms. Above, I introduced NIST (the National Institute of Standards and Technology), UMD (the University of Maryland), QuICS (the Joint Center for Quantum Information and Computer Science), the JQI (the Joint Quantum Institute), and IPST (the Institute for Physical Science and Technology). I’ll also have an affiliation with UMIACS (the University of Maryland Institute for Advanced Computer Science). Where else can one acquire six acronyms? I adore collecting affiliations, which force me to cross intellectual borders. I also enjoy the opportunity to laugh at my CV.

I’ve deferred joining NIST until summer 2021, to complete my postdoctoral fellowship at the Harvard-Smithsonian Institute for Theoretical Atomic, Molecular, and Optical Physics (an organization that needs its acronym, ITAMP, as much as “the Joint Center for Quantum Information and Computer Science” does). After then, please stop by. If you’d like to join my group, please email: I’m accepting applications for PhD and postdoctoral positions this fall. See you in Maryland next year.

1Also, blogging benefits my research. I’ll leave the explanation for another post.

I credit my husband with the Nesquick-NIST/QuICS parallel.

Love in the time of thermo

An 81-year-old medical doctor has fallen off a ladder in his house. His pet bird hopped out of his reach, from branch to branch of a tree on the patio. The doctor followed via ladder and slipped. His servants cluster around him, the clamor grows, and he longs for his wife to join him before he dies. She arrives at last. He gazes at her face; utters, “Only God knows how much I loved you”; and expires.

I set the book down on my lap and looked up. I was nestled in a wicker chair outside the Huntington Art Gallery in San Marino, California. Busts of long-dead Romans kept me company. The lawn in front of me unfurled below a sky that—unusually for San Marino—was partially obscured by clouds. My final summer at Caltech was unfurling. I’d walked to the Huntington, one weekend afternoon, with a novel from Caltech’s English library.1

What a novel.

You may have encountered the phrase “love in the time of corona.” Several times. Per week. Throughout the past six months. Love in the Time of Cholera predates the meme by 35 years. Nobel laureate Gabriel García Márquez captured the inhabitants, beliefs, architecture, mores, and spirit of a Colombian city around the turn of the 20th century. His work transcends its setting, spanning love, death, life, obsession, integrity, redemption, and eternity. A thermodynamicist couldn’t ask for more-fitting reading.

Love in the Time of Cholera centers on a love triangle. Fermina Daza, the only child of a wealthy man, excels in her studies. She holds herself with poise and self-assurance, and she spits fire whenever others try to control her. The girl dazzles Florentino Ariza, a poet, who restructures his life around his desire for her. Fermina Daza’s pride impresses Dr. Juvenal Urbino, a doctor renowned for exterminating a cholera epidemic. After rejecting both men, Fermina Daza marries Dr. Juvenal Urbino. The two personalities clash, and one betrays the other, but they cling together across the decades. Florentino Ariza retains his obsession with Fermina Daza, despite having countless affairs. Dr. Juvenal Urbino dies by ladder, whereupon Florentino Ariza swoops in to win Fermina Daza over. Throughout the book, characters mistake symptoms of love for symptoms of cholera; and lovers block out the world by claiming to have cholera and self-quarantining.

As a thermodynamicist, I see the second law of thermodynamics in every chapter. The second law implies that time marches only forward, order decays, and randomness scatters information to the wind. García Márquez depicts his characters aging, aging more, and aging more. Many characters die. Florentino Ariza’s mother loses her memory to dementia or Alzheimer’s disease. A pawnbroker, she buys jewels from the elite whose fortunes have eroded. Forgetting the jewels’ value one day, she mistakes them for candies and distributes them to children.

The second law bites most, to me, in the doctor’s final words, “Only God knows how much I loved you.” Later, the widow Fermina Daza sighs, “It is incredible how one can be happy for so many years in the midst of so many squabbles, so many problems, damn it, and not really know if it was love or not.” She doesn’t know how much her husband loved her, especially in light of the betrayal that rocked the couple and a rumor of another betrayal. Her husband could have affirmed his love with his dying breath, but he refused: He might have loved her with all his heart, and he might not have loved her; he kept the truth a secret to all but God. No one can retrieve the information after he dies.2 

Love in the Time of Cholera—and thermodynamics—must sound like a mouthful of horseradish. But each offers nourishment, an appetizer and an entrée. According to the first law of thermodynamics, the amount of energy in every closed, isolated system remains constant: Physics preserves something. Florentino Ariza preserves his love for decades, despite Fermina Daza’s marrying another man, despite her aging.

The latter preservation can last only so long in the story: Florentino Ariza, being mortal, will die. He claims that his love will last “forever,” but he won’t last forever. At the end of the novel, he sails between two harbors—back and forth, back and forth—refusing to finish crossing a River Styx. I see this sailing as prethermalization: A few quantum systems resist thermalizing, or flowing to the physics analogue of death, for a while. But they succumb later. Florentino Ariza can’t evade the far bank forever, just as the second law of thermodynamics forbids his boat from functioning as a perpetuum mobile.

Though mortal within his story, Florentino Ariza survives as a book character. The book survives. García Márquez wrote about a country I’d never visited, and an era decades before my birth, 33 years before I checked his book out of the library. But the book dazzled me. It pulsed with the vibrancy, color, emotion, and intellect—with the fullness—of life. The book gained another life when the coronavius hit. Thermodynamics dictates that people age and die, but the laws of thermodynamics remain.3 I hope and trust—with the caveat about humanity’s not destroying itself—that Love in the Time of Cholera will pulse in 350 years. 

What’s not to love?

1Yes, Caltech has an English library. I found gems in it, and the librarians ordered more when I inquired about books they didn’t have. I commend it to everyone who has access.

2I googled “Only God knows how much I loved you” and was startled to see the line depicted as a hallmark of romance. Please tell your romantic partners how much you love them; don’t make them guess till the ends of their lives.

3Lee Smolin has proposed that the laws of physics change. If they do, the change seems to have to obey metalaws that remain constant.

A quantum walk down memory lane

In elementary and middle school, I felt an affinity for the class three years above mine. Five of my peers had siblings in that year. I carpooled with a student in that class, which partnered with mine in holiday activities and Grandparents’ Day revues. Two students in that class stood out. They won academic-achievement awards, represented our school in science fairs and speech competitions, and enrolled in rigorous high-school programs.

Those students came to mind as I grew to know David Limmer. David is an assistant professor of chemistry at the University of California, Berkeley. He studies statistical mechanics far from equilibrium, using information theory. Though a theorist ardent about mathematics, he partners with experimentalists. He can pass as a physicist and keeps an eye on topics as far afield as black holes. According to his faculty page, I discovered while writing this article, he’s even three years older than I. 

I met David in the final year of my PhD. I was looking ahead to postdocking, as his postdoc fellowship was fading into memory. The more we talked, the more I thought, I’d like to be like him.

Playground

I had the good fortune to collaborate with David on a paper published by Physical Review A this spring (as an Editors’ Suggestion!). The project has featured in Quantum Frontiers as the inspiration for a rewriting of “I’m a little teapot.” 

We studied a molecule prevalent across nature and technologies. Such molecules feature in your eyes, solar-fuel-storage devices, and more. The molecule has two clumps of atoms. One clump may rotate relative to the other if the molecule absorbs light. The rotation switches the molecule from a “closed” configuration to an “open” configuration.

Molecular switch

These molecular switches are small, quantum, and far from equilibrium; so modeling them is difficult. Making assumptions offers traction, but many of the assumptions disagreed with David. He wanted general, thermodynamic-style bounds on the probability that one of these molecular switches would switch. Then, he ran into me.

I traffic in mathematical models, developed in quantum information theory, called resource theories. We use resource theories to calculate which states can transform into which in thermodynamics, as a dime can transform into ten pennies at a bank. David and I modeled his molecule in a resource theory, then bounded the molecule’s probability of switching from “closed” to “open.” I accidentally composed a theme song for the molecule; you can sing along with this post.

That post didn’t mention what David and I discovered about quantum clocks. But what better backdrop for a mental trip to elementary school or to three years into the future?

I’ve blogged about autonomous quantum clocks (and ancient Assyria) before. Autonomous quantum clocks differ from quantum clocks of another type—the most precise clocks in the world. Scientists operate the latter clocks with lasers; autonomous quantum clocks need no operators. Autonomy benefits you if you want for a machine, such as a computer or a drone, to operate independently. An autonomous clock in the machine ensures that, say, the computer applies the right logical gate at the right time.

What’s an autonomous quantum clock? First, what’s a clock? A clock has a degree of freedom (e.g., a pair of hands) that represents the time and that moves steadily. When the clock’s hands point to 12 PM, you’re preparing lunch; when the clock’s hands point to 6 PM, you’re reading Quantum Frontiers. An autonomous quantum clock has a degree of freedom that represents the time fairly accurately and moves fairly steadily. (The quantum uncertainty principle prevents a perfect quantum clock from existing.)

Suppose that the autonomous quantum clock constitutes one part of a machine, such as a quantum computer, that the clock guides. When the clock is in one quantum state, the rest of the machine undergoes one operation, such as one quantum logical gate. (Experts: The rest of the machine evolves under one Hamiltonian.) When the clock is in another state, the rest of the machine undergoes another operation (evolves under another Hamiltonian).

Clock 2

Physicists have been modeling quantum clocks using the resource theory with which David and I modeled our molecule. The math with which we represented our molecule, I realized, coincided with the math that represents an autonomous quantum clock.

Think of the molecular switch as a machine that operates (mostly) independently and that contains an autonomous quantum clock. The rotating clump of atoms constitutes the clock hand. As a hand rotates down a clock face, so do the nuclei rotate downward. The hand effectively points to 12 PM when the switch occupies its “closed” position. The hand effectively points to 6 PM when the switch occupies its “open” position.

The nuclei account for most of the molecule’s weight; electrons account for little. They flit about the landscape shaped by the atomic clumps’ positions. The landscape governs the electrons’ behavior. So the electrons form the rest of the quantum machine controlled by the nuclear clock.

Clock 1

Experimentalists can create and manipulate these molecular switches easily. For instance, experimentalists can set the atomic clump moving—can “wind up” the clock—with ultrafast lasers. In contrast, the only other autonomous quantum clocks that I’d read about live in theory land. Can these molecules bridge theory to experiment? Reach out if you have ideas!

And check out David’s theory lab on Berkeley’s website and on Twitter. We all need older siblings to look up to.

What can you do in 48 hours?

Have you ever wondered what can be done in 48 hours? For instance, our heart beats around 200 000 times. One of the biggest supercomputers crunches petabytes (peta = 1015) of numbers to simulate an experiment that took Google’s quantum processor only 300 seconds to run. In 48 hours, one can also participate in the Sciathon with almost 500 young researchers from more than 80 countries! 

Two weeks ago I participated in a scientific marathon, the Sciathon. The structure of this event roughly resembled a hackathon. I am sure many readers are familiar with the idea of a hackathon from personal experience. For those unfamiliar — a hackathon is an intense collaborative event, usually organized over the weekend, during which people with different backgrounds work in groups to create prototypes of functioning software or hardware. For me, it was the very first time to have firsthand experience with a hackathon-like event!

The Sciathon was organized by the Lindau Nobel Laureate Meetings (more about the meetings with Nobel laureates, which happen annually in the lovely German town of Lindau, in another blogpost, I promise!) This year, unfortunately, the face-to-face meeting in Lindau was postponed until the summer of 2021. Instead, the Lindau Nobel Laureate Meetings alumni and this year’s would-be attendees had an opportunity to gather for the Sciathon, as well as the Online Science Days earlier this week, during which the best Sciathon projects were presented.

The participants of the Sciathon could choose to contribute new views, perspectives and solutions to three main topics: Lindau Guidelines, Communicating Climate Change and Capitalism After Corona. The first topic concerned an open, cooperative science community where data and knowledge are freely shared, the second — how scientists could show that the climate crisis is just as big a threat as the SARS-CoV-19 virus, and the last — how to remodel our current economic systems so that they are more robust to unexpected sudden crises. More detailed descriptions of each topic can be found on the official Sciathon webpage.

My group of ten eager scientists, mostly physicists, from master students to postdoctoral researchers, focused on the first topic. In particular, our goal was to develop a method of familiarizing high school students with the basics of quantum information and computation. We envisioned creating an online notebook, where an engaging story would be intertwined with interactive blocks of Python code utilizing the open-source quantum computing toolkit Qiskit. This hands-on approach would enable students to play with quantum systems described in the story-line by simply running the pre-programmed commands with a click of the mouse and then observe how “experiment” matches “the theory”. We decided to work with a system comprising one or two qubits and explain such fundamental concepts in quantum physics as superposition, entanglement and measurement. The last missing part was a captivating story.

The story we came up with involved two good friends from the lab, Miss Schrödinger and Miss Pauli, as well as their kittens, Alice and Bob. At first, Alice and Bob seemed to be ordinary cats, however whenever they sipped quantum milk, they would turn into quantum cats, or as quantum physicists would say — kets. Do I have to remind the reader that a quantum cat, unlike an ordinary one, could be both awake and asleep at the same time?

Miss Schrödinger was a proud cat owner who not only loved her cat, but also would take hundreds of pictures of Alice and eagerly upload them on social media. Much to Miss Schrödinger’s surprise, none of the pictures showed Alice partly awake and partly asleep — the ket would always collapse to the cat awake or the cat asleep! Every now and then, Miss Pauli would come to visit Miss Schrödinger and bring her own cat Bob. While the good friends were chit-chatting over a cup of afternoon tea, the cats sipped a bit of quantum milk and started to play with a ball of wool, resulting in a cute mess of two kittens tangled up in wool. Every time after coming back home, Miss Pauli would take a picture of Bob and share it with Miss Schrödinger, who would obviously also take a picture of Alice. After a while, the young scientists started to notice some strange correlations between the states of their cats… 

The adventures of Miss Schrödinger and her cat continue! For those interested, you can watch a short video about our project! 

Overall, I can say that I had a lot of fun participating in the Sciathon. It was an intense yet extremely gratifying event. In addition to the obvious difficulty of racing against the clock, our group also had to struggle with coordinating video calls between group members scattered across three almost equidistant time zones — Eastern Australian, Central European and Central US! During the Sciathon I had a chance to interact with other science enthusiasts from different backgrounds and work on something from outside my area of expertise. I would strongly encourage anyone to participate in hackathon-like events to break the daily routine, particularly monotonous during the lockdown, and unleash one’s creative spirit. Such events can also be viewed as an opportunity to communicate science and scientific progress to the public. Lastly, I would like to thank other members of my team — collaborating with you during the Sciathon was a blast!

During the Sciathon, we had many brainstorming sessions. You can see most of the members of my group in this video call (from left to right, top to bottom): Shuang, myself, Martin, Kyle, Hadewijch, Saskia, Michael and Bartłomiej. The team also included Ahmed and Watcharaphol.