Unknown's avatar

About Nicole Yunger Halpern

I’m a theoretical physicist at the Joint Center for Quantum Information and Computer Science in Maryland. My research group re-envisions 19th-century thermodynamics for the 21st century, using the mathematical toolkit of quantum information theory. We then apply quantum thermodynamics as a lens through which to view the rest of science. I call this research “quantum steampunk,” after the steampunk genre of art and literature that juxtaposes Victorian settings (à la thermodynamics) with futuristic technologies (à la quantum information). For more information, check out my book for the general public, Quantum Steampunk: The Physics of Yesterday’s Tomorrow. I earned my PhD at Caltech under John Preskill’s auspices; one of my life goals is to be the subject of one of his famous (if not Pullitzer-worthy) poems. Follow me on Twitter @nicoleyh11.

Nicole’s guide to interviewing for faculty positions

Snow is haunting weather forecasts, home owners are taking down Christmas lights, stores are discounting exercise equipment, and faculty-hiring committees are winnowing down applications. In-person interviews often take place between January and March but can extend from December to April. If you applied for faculty positions this past fall and you haven’t begun preparing for interviews, begin. This blog post relates my advice about in-person interviews. It most directly addresses assistant professorships in theoretical physics at R1 North American universities, but the advice generalizes to other contexts. 

Top takeaway: Your interviewers aim to confirm that they’ll enjoy having you as a colleague. They’ll want to take pleasure in discussing a colloquium with you over coffee, consult you about your area of expertise, take pride in your research achievements, and understand you even if your specialty differs from theirs. You delight in learning and sharing about physics, right? Focus on that delight, and let it shine.

Anatomy of an interview: The typical interview lasts for one or two days. Expect each day to begin between 8:00 and 10:00 AM and to end between 7:00 and 8:30 PM. Yes, you’re justified in feeling exhausted just thinking about such a day. Everyone realizes that faculty interviews are draining, including the people who’ve packed your schedule. But fear not, even if you’re an introvert horrified at the thought of talking for 12 hours straight! Below, I share tips for maintaining your energy level. Your interview will probably involve many of the following components:

  • One-on-one meetings with faculty members: Vide infra for details and advice.
  • A meeting with students: Such meetings often happen over lunch or coffee.
  • Scientific talk: Vide infra.
  • Chalk talk: Vide infra.
  • Dinner: Faculty members will typically take you out to dinner. However, as an undergrad, I once joined a student dinner with a faculty candidate. Expect dinner to last a couple of hours, ending between 8:00 and 8:30 PM.
  • Breakfast: Interviews rarely extend to breakfast, in my experience. But I once underwent an interview whose itinerary was so packed, a faculty member squeezed himself onto the schedule by coming to my hotel’s restaurant for banana bread and yogurt.

After receiving the interview invitation, politely request that your schedule include breaks. First, of course, you’ll thank the search-committee chair (who probably issued the invitation), convey your enthusiasm, and opine about possible interview dates. After accomplishing those tasks, as a candidate, I asked that a 5-to-10-minute break separate consecutive meetings and that 30–45 minutes of quiet time precede my talk (or talks). Why? For two reasons.

First, the search committee was preparing to pack my interview day (or days) to the gills. I’d have to talk for about twelve hours straight. And—much as I adore the physics community, adore learning about physics from colleagues, and adore sharing physics—I’m an introvert. Such a schedule exhausts me. It would probably exhaust all but the world champions of extroversion, and few physicists could even qualify for that competition. After nearly every meeting, I’d find a bathroom, close my eyes, and breathe. (I might also peek at my notes about my next interviewee; vide infra.) The alone time replenished my energy.

Second, committees often schedule interviews back to back. Consecutive interviews might take place in different buildings, though, and walking between buildings doesn’t take zero minutes. Also, physicists love explaining their research. Interviewer #1 might therefore run ten minutes over their allotted time before realizing they had to shepherd me to another building in zero minutes. My lateness would disrespect Interviewer #2. Furthermore, many interviews last only 30 minutes each. Given 30 - 10 - (\gtrsim 0) \approx 15 minutes, Interviewer #2 and I could scarcely make each other’s acquaintance. So I smuggled travel time into my schedule.

Feel awkward about requesting breaks? Don’t worry; everyone knows that interview days are draining. Explain honestly, simply, and respectfully that you’re excited about meeting everyone and that breaks will keep you energized throughout the long day.

Research your interviewers: A week before your interview, the hiring committee should have begun drafting a schedule for you. The schedule might continue to evolve until—and during—your interview. But request the schedule a week in advance, and research everyone on it.

When preparing for an interview, I’d create a Word/Pages document with one page per person. On Interviewer X’s page, I’d list relevant information culled from their research-group website, university faculty pages, arXiv page, and Google Scholar page. Does X undertake theoretical or experimental research? Which department do they belong to? Which experimental platform/mathematical toolkit do they specialize in? Which of their interests overlap with which of mine? Which papers of theirs intrigue me most? Could any of their insights inform my research or vice versa? Do we share any coauthors who might signal shared research goals? I aimed to be able to guide a conversation that both X and I would enjoy and benefit from.

Ask your advisors if they know anybody on your schedule or in the department you’re visiting. Advisors know and can contextualize many of their peers. For example, perhaps X grew famous for discovery Y, founded subfield Z, or harbors a covert affection for the foundations of quantum physics. An advisor of yours might even have roomed with X in college.

Prepare an elevator pitch for your research program: Cross my heart and hope to die, the following happened to me when I visited another institution (although not to interview). My host and I stepped into elevator occupied by another faculty member. Our conversation could have served as the poster child for the term “elevator pitch”:

Host: Hi, Other Faculty Member; good to see you. By the way, this is Nicole from Maryland. She’s giving the talk today.

Other Faculty Member: Ah, good to meet you, Nicole. What do you work on?

Be able to answer that question—to synopsize your research program—before leaving the elevator. Feel free start with your subfield: artificial active matter, the many-body physics of quantum information, dark-matter detection, etc. But the subfield doesn’t suffice. Oodles of bright-eyed, bushy-tailed young people study the many-body physics of quantum information. How does your research stand out? Do you apply a unique toolkit? Are you pursuing a unique goal? Can you couple together more qubits than any other experimentalist using the same platform? Make Other Faculty Member think, Ah. I’d like to attend that talk.

Dress neatly and academically: Interview clothing should demonstrate respect, while showing that you understand the department’s culture and belong there. Almost no North American physicists wear ties, even to present colloquia, so I advise against ties. Nor do I recommend suits. 

To those presenting as male, I’d recommend slacks; a button-down shirt; dark shoes (neither sneakers nor patent leather); and a corduroy or knit pullover, a corduroy or knit vest, or a sports jacket. If you prefer a skirt or dress, I’d recommend that it reach at least your knees. Wear comfortable shoes; you’ll stand and walk a great deal. Besides, many interviews take place during the winter, a season replete with snow and mud. I wore knee-height black leather boots that had short, thick heels.

Look the part. Act the part. Help your interviewers envision you in the position you want.

Pack snacks: A student group might whisk you off to lunch at 11:45, but dinner might not begin until 6:30. Don’t let your blood-sugar level drop too low. On my interview days, I packed apple slices and nuts: a balance of unprocessed sugar, protein, and fat.

One-on-one meetings: The hiring committee will cram these into your schedule like sardines into a tin. Typically, you’ll meet with each faculty member for approximately 30 minutes. The faculty member might work in your area of expertise, might belong to the committee (and so might subscribe to a random area of expertise), or might simply be curious about you. Prepare for these one-on-one meetings in advance, as described above. Review your notes on the morning of your interview. Be able to initiate and sustain a conversation of interest to you and your interlocutor, as well as to follow their lead. Your interlocutor might want to share their research, ask technical questions about your work, or hear a bird’s-eye overview of your research program. 

Other topics, such as teaching and faculty housing, might crop up. Feel free to address these subjects if your interlocutor introduces them. If you’re directing the conversation, though, I’d focus mostly on physics. You can ask about housing and other logistics if you receive an offer, and these topics often arise at faculty dinners.

The job talk: The interview will center on a scientific talk. You might present a seminar (perhaps billed as a “special seminar”) or a colloquium. The department will likely invite all its members to attend. Focus mostly on the research you’ve accomplished. Motivate your research program, to excite even attendees from outside your field. (This blog post describes what I look for in a research program when evaluating applications.) But also demonstrate your technical muscle; show how your problems qualify as difficult and how you’ve innovated solutions. Hammer home your research’s depth, but also dedicate a few minutes to its breadth, to demonstrate your research maturity. At the end, offer a glimpse of your research plans. The hiring committee might ask you to dwell more on those in a chalk talk (vide infra). 

Practice your talk alone many times, practice in front of an audience, revise the talk, practice it alone again many times, and practice it in front of another audience. And then—you guessed it—practice the talk again. Enlist listeners from multiple subfields of physics, including yours. Also, enlist grad students, postdocs, and faculty members. Different listeners can help ensure that you’re explaining concepts understandably, that you’ve brushed up on the technicalities, and that you’re motivating your research convincingly.

A faculty member once offered the following advice about questions asked during job talks: if you don’t know an answer, you can offer to look it up after the talk. But you can play this “get out of jail free” card only once. I’ll expand on the advice: if you promise to look up an answer, then follow through, and email the answer to the inquirer. Also, even if you don’t know an answer, you can answer a related question that’ll satisfy the inquirer partially. For example, suppose someone asks whether a particular experiment supports a prediction you’ve made. Maybe you haven’t checked—but maybe you have checked numerical simulations of similar experiments.

The chalk talk: The hiring committee might or might not request a chalk talk. I have the impression that experimentalists receive the request more than theorists do. Still, I presented a couple of chalk talks as a theorist. Only the hiring committee, or at least only faculty members, will attend such a talk. They’ll probably have attended your scientific talk, so don’t repeat much of it. 

The name “chalk talk” can deceive us in two ways. First, one committee requested that I prepare slides for my chalk talk. Another committee did limit me to chalk, though. Second, the chalk “talk” may end up a conversation, rather than a presentation.

The hiring-committee chair should stipulate in advance what they want from your chalk talk. If they don’t, ask for clarification. Common elements include the following:

  • Describe the research program you’ll pursue over the next five years.
  • Where will you apply for funding? Offer greater detail than “the NSF”: under which NSF programs does your research fall? Which types of NSF grants will you apply for at which times?
  • How will you grow your group? How many undergrads, master’s students, PhD students, and postdocs will you hire during each of the next five years? When will your group reach a steady state? How will the steady state look?
  • Describe the research project you’ll give your first PhD/master’s/undergraduate student.
  • What do you need in a startup package? (A startup package consists of university-sourced funding. It enables you to hire personnel, buy equipment, and pay other expenses before landing your first grants.)
  • Which experimental/computational equipment will you purchase first? How much will it cost?
  • Which courses do you want to teach? Identify undergraduate courses, core graduate-level courses, and one or two specialized seminars.

Sample interview questions: Sketch your answers to the following questions in bullet points. Writing the answers out will ensure that you think through them and will help you remember them. Using bullet points will help you pinpoint takeaways.

  • The questions under “The chalk talk”
  • What sort of research do you do?
  • What are you most excited about?
  • Where do you think your field is headed? How will it look in five, ten, or twenty years?
  • Which paper are you proudest of?
  • How will you distinguish your research program from your prior supervisors’ programs?
  • Do you envision opportunities for theory–experiment collaborations?
  • What teaching experience do you have? (Research mentorship counts as teaching. Some public outreach can count, too.)
  • Which mathematical tools do you use most?
  • How do you see yourself fitting into the department? (Does the department host an institute for your subfield? Does the institute have oodles of theorists whom you’ll counterbalance as an experimentalist? Will you bridge multiple research groups through your interdisciplinary work? Will you anchor a new research group that the department plans to build over the next decade?)

Own your achievements, but don’t boast: At a workshop late in my PhD, I heard a professor describe her career. She didn’t color her accomplishments artificially; she didn’t sound arrogant; she didn’t even sound as though she aimed to impress her audience. She sounded as though the workshop organizer had tasked her with describing her work and she was following his instructions straightforwardly, honestly, and simply. Her achievements spoke for themselves. They might as well have been reciting Shakespeare, they so impressed me. Perhaps we early-career researchers need another few decades before we can hope to emulate that professor’s poise and grace. But when compelled to describe what I’ve done, I lift my gaze mentally to her.

My schooling imprinted on me an appreciation for modesty. Therefore, the need to own my work publicly used to trouble me. But your interviewers need to know of your achievements: they need to respect you, to see that you deserve a position in their department. Don’t downplay your contributions to collaborations, and don’t shy away from claiming your proofs. But don’t brag or downplay your collaborators’ contributions. Describe your work straightforwardly; let it speak for itself.

Evaluators shouldn’t ask about your family: Their decision mustn’t depend on whether you’re a single adult who can move at the drop of a hat, whether you’re engaged to someone who’ll have to approve the move, or whether you have three children rooted in their school district. This webpage elaborates on the US’s anti-discrimination policy. What if an evaluator asks a forbidden question? One faculty member has recommended the response, “Does the position depend on that information?”

Follow up: Thank each of your interviewers individually, via email, within 24 hours of the conversation. Time is to faculty members as water is to Californians during wildfire season. As an interviewee, I felt grateful to all the faculty who dedicated time to me. (I mailed hand-written thank-you cards in addition to writing emails, but I’d expect almost nobody else to do that.)

How did I compose thank-you messages? I’d learned some nugget from every meeting, and I’d enjoyed some element of almost every meeting. I described what I learned and enjoyed, and I expressed the gratitude I felt.

Try to enjoy yourself: A committee chose your application from amongst hundreds. Cherish the compliment. Cherish the opportunity to talk physics with smart people. During my interviews, I learned about quantum information, thermodynamics, cosmology, biophysics,  and dark-matter detection. I connected with faculty members whom I still enjoy greeting at conferences; unknowingly recruited a PhD student into quantum thermodynamics during a job talk; and, for the first time, encountered a dessert shaped like sushi (at a faculty dinner. I stuck with a spicy tuna roll, but the dessert roll looked stunning). Retain an attitude of gratitude, and you won’t regret your visit.

Make use of time, let not advantage slip

During the spring of 2022, I felt as though I kept dashing backward and forward in time. 

At the beginning of the season, hay fever plagued me in Maryland. Then, I left to present talks in southern California. There—closer to the equator—rose season had peaked, and wisteria petals covered the ground near Caltech’s physics building. From California, I flew to Canada to present a colloquium. Time rewound as I traveled northward; allergies struck again. After I returned to Maryland, the spring ripened almost into summer. But the calendar backtracked when I flew to Sweden: tulips and lilacs surrounded me again.

Caltech wisteria in April 2022: Thou art lovely and temperate.

The zigzagging through horticultural time disoriented my nose, but I couldn’t complain: it echoed the quantum information processing that collaborators and I would propose that summer. We showed how to improve quantum metrology—our ability to measure things, using quantum detectors—by simulating closed timelike curves.

Swedish wildflowers in June 2022

A closed timelike curve is a trajectory that loops back on itself in spacetime. If on such a trajectory, you’ll advance forward in time, reverse chronological direction to advance backward, and then reverse again. Author Jasper Fforde illustrates closed timelike curves in his novel The Eyre Affair. A character named Colonel Next buys an edition of Shakespeare’s works, travels to the Elizabethan era, bestows them on a Brit called Will, and then returns to his family. Will copies out the plays and stages them. His colleagues publish the plays after his death, and other editions ensue. Centuries later, Colonel Next purchases one of those editions to take to the Elizabethan era.1 

Closed timelike curves can exist according to Einstein’s general theory of relativity. But do they exist? Nobody knows. Many physicists expect not. But a quantum system can simulate a closed timelike curve, undergoing a process modeled by the same mathematics.

How can one formulate closed timelike curves in quantum theory? Oxford physicist David Deutsch proposed one formulation; a team led by MIT’s Seth Lloyd proposed another. Correlations distinguish the proposals. 

Two entities share correlations if a change in one entity tracks a change in the other. Two classical systems can correlate; for example, your brain is correlated with mine, now that you’ve read writing I’ve produced. Quantum systems can correlate more strongly than classical systems can, as by entangling

Suppose Colonel Next correlates two nuclei and gives one to his daughter before embarking on his closed timelike curve. Once he completes the loop, what relationship does Colonel Next’s nucleus share with his daughter’s? The nuclei retain the correlations they shared before Colonel Next entered the loop, according to Seth and collaborators. When referring to closed timelike curves from now on, I’ll mean ones of Seth’s sort.

Toronto hadn’t bloomed by May 2022.

We can simulate closed timelike curves by subjecting a quantum system to a circuit of the type illustrated below. We read the diagram from bottom to top. Along this direction, time—as measured by a clock at rest with respect to the laboratory—progresses. Each vertical wire represents a qubit—a basic unit of quantum information, encoded in an atom or a photon or the like. Each horizontal slice of the diagram represents one instant. 

At the bottom of the diagram, the two vertical wires sprout from one curved wire. This feature signifies that the experimentalist prepares the qubits in an entangled state, represented by the symbol | \Psi_- \rangle. Farther up, the left-hand wire runs through a box. The box signifies that the corresponding qubit undergoes a transformation (for experts: a unitary evolution). 

At the top of the diagram, the vertical wires fuse again: the experimentalist measures whether the qubits are in the state they began in. The measurement is probabilistic; we (typically) can’t predict the outcome in advance, due to the uncertainty inherent in quantum physics. If the measurement yields the yes outcome, the experimentalist has simulated a closed timelike curve. If the no outcome results, the experimentalist should scrap the trial and try again.

So much for interpreting the diagram above as a quantum circuit. We can reinterpret the illustration as a closed timelike curve. You’ve probably guessed as much, comparing the circuit diagram to the depiction, farther above, of Colonel Next’s journey. According to the second interpretation, the loop represents one particle’s trajectory through spacetime. The bottom and top show the particle reversing chronological direction—resembling me as I flew to or from southern California.

Me in southern California in spring 2022. Photo courtesy of Justin Dressel.

How can we apply closed timelike curves in quantum metrology? In Fforde’s books, Colonel Next has a brother, named Mycroft, who’s an inventor.2 Suppose that Mycroft is studying how two particles interact (e.g., by an electric force). He wants to measure the interaction’s strength. Mycroft should prepare one particle—a sensor—and expose it to the second particle. He should wait for some time, then measure how much the interaction has altered the sensor’s configuration. The degree of alteration implies the interaction’s strength. The particles can be quantum, if Mycroft lives not merely in Sherlock Holmes’s world, but in a quantum-steampunk one.

But how should Mycroft prepare the sensor—in which quantum state? Certain initial states will enable the sensor to acquire ample information about the interaction; and others, no information. Mycroft can’t know which preparation will work best: the optimal preparation depends on the interaction, which he hasn’t measured yet. 

Mycroft, as drawn by Sydney Paget in the 1890s

Mycroft can overcome this dilemma via a strategy published by my collaborator David Arvidsson-Shukur, his recent student Aidan McConnell, and me. According to our protocol, Mycroft entangles the sensor with a third particle. He subjects the sensor to the interaction (coupling the sensor to particle #2) and measures the sensor. 

Then, Mycroft learns about the interaction—learns which state he should have prepared the sensor in earlier. He effectively teleports this state backward in time to the beginning-of-protocol sensor, using particle #3 (which began entangled with the sensor).3 Quantum teleportation is a decades-old information-processing task that relies on entanglement manipulation. The protocol can transmit quantum states over arbitrary distances—or, effectively, across time.

We can view Mycroft’s experiment in two ways. Using several particles, he manipulates entanglement to measure the interaction strength optimally (with the best possible precision). This process is mathematically equivalent to another. In the latter process, Mycroft uses only one sensor. It comes forward in time, reverses chronological direction (after Mycroft learns the optimal initial state’s form), backtracks to an earlier time (to when the sensing protocol began), and returns to progressing forward in time (informing Mycroft about the interaction).

Where I stayed in Stockholm. I swear, I’m not making this up.

In Sweden, I regarded my work with David and Aidan as a lark. But it’s led to an experiment, another experiment, and two papers set to debut this winter. I even pass as a quantum metrologist nowadays. Perhaps I should have anticipated the metamorphosis, as I should have anticipated the extra springtimes that erupted as I traveled between north and south. As the bard says, there’s a time for all things.

More Swedish wildflowers from June 2022

1In the sequel, Fforde adds a twist to Next’s closed timelike curve. I can’t speak for the twist’s plausibility or logic, but it makes for delightful reading, so I commend the novel to you.

2You might recall that Sherlock Holmes has a brother, named Mycroft, who’s an inventor. Why? In Fforde’s novel, an evil corporation pursues Mycroft, who’s built a device that can transport him into the world of a book. Mycroft uses the device to hide from the corporation in Sherlock Holmes’s backstory.

3Experts, Mycroft implements the effective teleportation as follows: He prepares a fourth particle in the ideal initial sensor state. Then, he performs a two-outcome entangling measurement on particles 3 and 4: he asks “Are particles 3 and 4 in the state in which particles 1 and 3 began?” If the measurement yields the yes outcome, Mycroft has effectively teleported the ideal sensor state backward in time. He’s also simulated a closed timelike curve. If the measurement yields the no outcome, Mycroft fails to measure the interaction optimally. Figure 1 in our paper synopsizes the protocol.

What distinguishes quantum from classical thermodynamics?

Should you require a model for an Oxford don in a play or novel, look no farther than Andrew Briggs. The emeritus professor of nanomaterials speaks with a southern-English accent as crisp as shortbread, exhibits manners to which etiquette influencer William Hanson could aspire, and can discourse about anything from Bantu to biblical Hebrew. I joined Andrew for lunch at St. Anne’s College, Oxford, this month.1 Over vegetable frittata, he asked me what unifying principle distinguishes quantum from classical thermodynamics.

With a thermodynamic colleague at the Oxford University Museum of Natural History

I’d approached quantum thermodynamics from nearly every angle I could think of. I’d marched through the thickets of derivations and plots; I’d journeyed from subfield to subfield; I’d gazed down upon the discipline as upon a landscape from a hot-air balloon. I’d even prepared a list of thermodynamic tasks enhanced by quantum phenomena: we can charge certain batteries at greater powers if we entangle them than if we don’t, entanglement can raise the amount of heat pumped out of a system by a refrigerator, etc. But Andrew’s question flummoxed me.

I bungled the answer. I toted out the aforementioned list, but it contained examples, not a unifying principle. The next day, I was sitting in an office borrowed from experimentalist Natalia Ares in New College, a Gothic confection founded during the late 1300s (as one should expect of a British college called “New”). Admiring the view of ancient stone walls, I realized how I should have responded the previous day.

View from a window near the office I borrowed in New College. If I could pack that office in a suitcase and carry it home, I would.

My answer begins with a blog post written in response to a quantum-thermodynamics question from a don at another venerable university: Yoram Alhassid. He asked, “What distinguishes quantum thermodynamics to quantum statistical mechanics?” You can read the full response here. Takeaways include thermodynamics’s operational flavor. When using an operational theory, we imagine agents who perform tasks, using given resources. For example, a thermodynamic agent may power a steamboat, given a hot gas and a cold gas. We calculate how effectively the agents can perform those tasks. For example, we compute heat engines’ efficiencies. If a thermodynamic agent can access quantum resources, I’ll call them “quantum thermodynamic.” If the agent can access only everyday resources, I’ll call them “classical thermodynamic.”

A quantum thermodynamic agent may access more resources than a classical thermodynamic agent can. The latter can leverage work (well-organized energy), free energy (the capacity to perform work), information, and more. A quantum agent may access not only those resources, but also entanglement (strong correlations between quantum particles), coherence (wavelike properties of quantum systems), squeezing (the ability to toy with quantum uncertainty as quantified by Heisenberg and others), and more. The quantum-thermodynamic agent may apply these resources as described in the list I rattled off at Andrew.

With Oxford experimentalist Natalia Ares in her lab

Yet quantum phenomena can impede a quantum agent in certain scenarios, despite assisting the agent in others. For example, coherence can reduce a quantum engine’s power. So can noncommutation. Everyday numbers commute under multiplication: 11 times 12 equals 12 times 11. Yet quantum physics features numbers that don’t commute so. This noncommutation underlies quantum uncertainty, quantum error correction, and much quantum thermodynamics blogged about ad nauseam on Quantum Frontiers. A quantum engine’s dynamics may involve noncommutation (technically, the Hamiltonian may contain terms that fail to commute with each other). This noncommutation—a fairly quantum phenomenon—can impede the engine similarly to friction. Furthermore, some quantum thermodynamic agents must fight decoherence, the leaking of quantum information from a quantum system into its environment. Decoherence needn’t worry any classical thermodynamic agent.

In short, quantum thermodynamic agents can benefit from more resources than classical thermodynamic agents can, but the quantum agents also face more threats. This principle might not encapsulate how all of quantum thermodynamics differs from its classical counterpart, but I think the principle summarizes much of the distinction. And at least I can posit such a principle. I didn’t have enough experience when I first authored a blog post about Oxford, in 2013. People say that Oxford never changes, but this quantum thermodynamic agent does.

In the University of Oxford Natural History Museum in 2013, 2017, and 2025. I’ve published nearly 150 Quantum Frontiers posts since taking the first photo!

1Oxford consists of colleges similarly to how neighborhoods form a suburb. Residents of multiple neighborhoods may work in the same dental office. Analogously, faculty from multiple colleges may work, and undergraduates from multiple colleges may major, in the same department.

The sequel

This October, fantasy readers are devouring a sequel: the final installment in Philip Pullman’s trilogy The Book of Dust. The series follows student Lyra Silvertongue as she journeys from Oxford to the far east. Her story features alternate worlds, souls that materialize as talking animals, and a whiff of steampunk. We first met Lyra in the His Dark Materials trilogy, which Pullman began publishing in 1995. So some readers have been awaiting the final Book of Dust volume for 30 years. 

Another sequel debuts this fall. It won’t spur tens of thousands of sales; nor will Michael Sheen narrate an audiobook version of it. Nevertheless, the sequel should provoke as much thought as Pullman’s: the sequel to the Maryland Quantum-Thermodynamics Hub’s first three years.

More deserving of a Carnegie Medal than our hub, but the hub deserves no less enthusiasm!

The Maryland Quantum-Thermodynamics Hub debuted in 2022, courtesy of a grant from the John F. Templeton Foundation. Six theorists, three based in Maryland, have formed the hub’s core. Our mission has included three prongs: research, community building, and outreach. During the preceding decade, quantum thermodynamics had exploded, but mostly outside North America. We aimed to provide a lodestone for the continent’s quantum-thermodynamics researchers and visitors.

Also, we aimed to identify the thermodynamics of how everyday, classical physics emerges from quantum physics. Quantum physics is reversible (doesn’t distinguish the past from the future), is delicate (measuring a quantum system can disturb it), and features counterintuitive phenomena such as entanglement. In contrast, our everyday experiences include irreversibility (time has an arrow), objectivity (if you and I read this article, we should agree about its contents), and no entanglement. How does quantum physics give rise to classical physics at large energy and length scales? Thermodynamics has traditionally described macroscopic, emergent properties. So quantum thermodynamics should inform our understanding of classical reality’s emergence from quantum mechanics.

Our team has approached this opportunity from three perspectives. One perspective centers on quantum Darwinism, a framework for quantifying how interactions spread information about an observed quantum system. Another perspective highlights decoherence, the contamination of a quantum system by its environment. The third perspective features incompatible exchanged quantities, described in an earlier blog post. Or two. Or at least seven

Each perspective led us to discover a tension, or apparent contradiction, that needs resolving. One might complain that we failed to clinch a quantum-thermodynamic theory of the emergence of classical reality. But physicists adore apparent contradictions as publishers love splashing “New York Times bestseller” on their book covers. So we aim to resolve the tensions over the next three years.

Physicists savor paradoxes and their ilk.

I’ll illustrate the tensions with incompatible exchanged quantities, of course. Physicists often imagine a small system, such as a quantum computer, interacting with a large environment, such as the surrounding air and the table on which the quantum computer sits. The system and environment may exchange energy, particles, electric charge, etc. Typically, the small system thermalizes, or reaches a state mostly independent of its initial conditions. For example, after exchanging enough energy with its environment, the system ends up at the environment’s temperature, mostly regardless of the system’s initial temperature. 

For decades, physicists implicitly assumed that the exchanged quantities are compatible: one can measure them simultaneously. But one can’t measure all of a quantum system’s properties simultaneously. Position and momentum form the most famous examples. Incompatibility epitomizes quantum physics, underlying Heisenberg’s uncertainty relation, quantum error correction, and more. So collaborators and I ask how exchanged quantities’ incompatibility alters thermalization, which helps account for time’s arrow. 

Our community has discovered that such incompatibility can hinder certain facets of thermalization—in a sense, stave off certain aspects of certain quantum systems’ experience of time. But incompatible exchanged quantities enhance other features of thermalization. How shall we reconcile the hindrances with the enhancements? Does one of the two effects win out? I hope to report back in three years. For now, I’m rooting for Team Hindrance.

In addition to resolving apparent conflicts, we’re adding a fourth perspective to our quiver—a gravitational one. In our everyday experiences, space-time appears smooth; unlike Lyra’s companion Will in The Subtle Knife, we don’t find windows onto other worlds. But quantum physics, combined with general relativity, suggests that you’d find spikes and dips upon probing space-time over extremely short length scales. How does smooth space-time emerge from its quantum underpinnings? Again, quantum thermodynamics should help us understand.

To address these challenges, we’re expanding the hub’s cast of characters. The initial cast included six theorists. Two more are joining the crew, together with the hub’s first two experimentalists. So is our first creative-writing instructor, who works at the University of Maryland (UMD) Jiménez-Porter Writers’ House.

As the hub has grown, so has the continent’s quantum-thermodynamics community. We aim to continue expanding that community and strengthening its ties to counterparts abroad. As Lyra learned in Pullman’s previous novel, partnering with Welsh miners and Czech book sellers and Smyrnan princesses can further one’s quest. I don’t expect the Maryland Quantum-Thermodynamics Hub to attract Smyrnan princesses, but a girl can dream. The hub is already partnering with the John F. Templeton Foundation, Normal Computing, the Fidelity Center for Applied Technology, the National Quantum Laboratory, Maryland’s Capital of Quantum team, and more. We aim to integrate quantum thermodynamics into North America’s scientific infrastructure, so that the field thrives here even after our new grant terminates. Reach out if you’d like to partner with us.

To unite our community, the hub will host a gathering—a symposium or conference—each year. One conference will feature quantum thermodynamics and quantum-steampunk creative writing. Scientists and authors will present. We hope that both groups will inspire each other, as physicist David Deutsch’s work on the many-worlds formulation of quantum theory inspired Pullman.

That conference will follow a quantum-steampunk creative-writing course to take place at UMD during spring 2026. I’ll co-teach the course with creative-writing instructor Edward Daschle. Students will study quantum thermodynamics, read published science-fiction stories, write quantum-steampunk stories, and critique each other’s writing. Five departments have cross-listed the course: physics, arts and humanities, computer science, chemistry, and mechanical engineering. If you’re a UMD student, you can sign up in a few weeks. Do so early; seats are limited! We welcome graduate students and undergrads, the latter of whom can earn a GSSP general-education credit.1 Through the course, the hub will spread quantum thermodynamics into Pullman’s world—into literature.

Pullman has entitled his latest novel The Rose Field. The final word refers to an object studied by physicists. A field, such as an electric or gravitational field, is a physical influence spread across space. Hence fiction is mirroring physics—and physics can take its cue from literature. As ardently as Lyra pursues the mysterious particle called Dust, the Maryland Quantum-Thermodynamics Hub is pursuing a thermodynamic understanding of the classical world’s emergence from quantum physics. And I think our mission sounds as enthralling as Lyra’s. So keep an eye on the hub for physics, community activities, and stories. The telling of Lyra’s tale may end this month, but the telling of the hub’s doesn’t.

1Just don’t ask me what GSSP stands for.

Blending science with fiction in Baltimore

I judge a bookstore by the number of Diana Wynne Jones novels it stocks. The late British author wrote some of the twentieth century’s most widely lauded science-fiction and fantasy (SFF). She clinched more honors than I should list, including two World Fantasy Awards. Neil Gaiman, author of American Gods, called her “the best children’s writer of the last forty years” in 2010—and her books suit children of all ages.1 But Wynne Jones passed away as I was finishing college, and her books have been disappearing from American bookshops. The typical shop stocks, at best, a book in the series she began with Howl’s Moving Castle, which Hayao Miyazaki adapted into an animated film.

I don’t recall the last time I glimpsed Deep Secret in a bookshop, but it ranks amongst my favorite Wynne Jones books—and favorite books, full-stop. So I relished living part of that book this spring.

Deep Secret centers on video-game programmer Rupert Venables. Outside of his day job, he works as a Magid, a magic user who helps secure peace and progress across the multiple worlds. Another Magid has passed away, and Rupert must find a replacement for him. How does Rupert track down and interview his candidates? By consolidating their fate lines so that the candidates converge on an SFF convention. Of course.

My fate line drew me to an SFF convention this May. Balticon takes place annually in Baltimore, Maryland. It features not only authors, agents, and publishers, but also science lecturers. I received an invitation to lecture about quantum steampunk—not video-game content,2 but technology-oriented like Rupert’s work. I’d never attended an SFF convention,3 so I reread Deep Secret as though studying for an exam.

Rupert, too, is attending his first SFF convention. A man as starched as his name sounds, Rupert packs suits, slacks, and a polo-neck sweater for the weekend—to the horror of a denim-wearing participant. I didn’t bring suits, in my defense. But I did dress business-casual, despite having anticipated that jeans, T-shirts, and capes would surround me.

I checked into a Renaissance Hotel for Memorial Day weekend, just as Rupert checks into the Hotel Babylon for Easter weekend. Like him, I had to walk an inordinately long distance from the elevators to my room. But Rupert owes his trek to whoever’s disrupted the magical node centered on his hotel. My hotel’s architects simply should have installed more elevator banks.

Balticon shared much of its anatomy with Rupert’s con, despite taking place in a different century and country (not to mention world). Participants congregated downstairs at breakfast (continental at Balticon, waitered at Rupert’s hotel). Lectures and panels filled most of each day. A masquerade took place one night. (I slept through Balticon’s; impromptu veterinary surgery occupies Rupert during his con’s.) Participants vied for artwork at an auction. Booksellers and craftspeople hawked their wares in a dealer’s room. (None of Balticon’s craftspeople knew their otherworldly subject matter as intimately as Rupert’s Magid colleague Zinka Fearon does, I trust. Zinka paints her off-world experiences when in need of cash.)

In our hotel room, I read out bits of Deep Secret to my husband, who confirmed the uncanniness with which they echoed our experiences. Both cons featured floor-length robes, Batman costumes, and the occasional slinky dress. Some men sported long-enough locks, and some enough facial hair, to do a Merovingian king proud. Rupert registers “a towering papier-mâché and plastic alien” one night; on Sunday morning, a colossal blow-up unicorn startled my husband and me. We were riding the elevator downstairs to breakfast, pausing at floor after floor. Hotel guests packed the elevator like Star Wars fans at a Lucasfilm debut. Then, the elevator halted again. The doors opened on a bespectacled man, 40-something years old by my estimate, dressed as a blue-and-white unicorn. The costume billowed out around him; the golden horn towered multiple feet above his head. He gazed at our sardine can, and we gazed at him, without speaking. The elevator doors shut, and we continued toward breakfast.

Photo credit: Balticon

Despite having read Deep Secret multiple times, I savored it again. I even laughed out loud. Wynne Jones paints the SFF community with the humor, exasperation, and affection one might expect of a middle-school teacher contemplating her students. I empathize, belonging to a community—the physics world—nearly as idiosyncratic as the SFF community.4 Wynne Jones’s warmth for her people suffuses Deep Secret; introvert Rupert surprises himself by enjoying a dinner with con-goers and wishing to spend more time with them. The con-goers at my talk exhibited as much warmth as any audience I’ve spoken to, laughing, applauding, and asking questions. I appreciated sojourning in their community for a weekend.5

This year, my community is fêting the physicists who founded quantum theory a century ago. Wynne Jones sparked imaginations two decades ago. Let’s not let her memory slip from our fingertips like a paperback over which we’re falling asleep. After all, we aren’t forgetting Louis de Broglie, Paul Dirac, and their colleagues. So check out a Wynne Jones novel the next time you visit a library, or order a novel of hers to your neighborhood bookstore. Deep Secret shouldn’t be an actual secret.

With thanks to Balticon’s organizers, especially Miriam Winder Kelly, for inviting me and for fussing over their speakers’ comfort like hens over chicks.

1Wynne Jones dedicated her novel Hexwood to Gaiman, who expressed his delight in a poem. I fancy the comparison of Gaiman, a master of phantasmagoria and darkness, to a kitten.

2Yet?

3I’d attended a steampunk convention, and spoken at a Boston SFF convention, virtually. But as far as such conventions go, attending virtually is to attending in person as my drawings are to a Hayao Miyazaki film.

4But sporting fewer wizard hats.

5And I wonder what the Diana Wynne Jones Conference–Festival is like.

Nicole’s guide to writing research statements

Sunflowers are blooming, stores are trumpeting back-to-school sales, and professors are scrambling to chart out the courses they planned to develop in July. If you’re applying for an academic job this fall, now is the time to get your application ducks in a row. Seeking a postdoctoral or faculty position? Your applications will center on research statements. Often, a research statement describes your accomplishments and sketches your research plans. What do evaluators look for in such documents? Here’s my advice, which targets postdoctoral fellowships and faculty positions, especially for theoretical physicists.

  • Keep your audience in mind. Will a quantum information theorist, a quantum scientist, a general physicist, a general scientist, or a general academic evaluate your statement? What do they care about? What technical language do and don’t they understand?
  • What thread unites all the projects you’ve undertaken? Don’t walk through your research history chronologically, stepping from project to project. Cast the key projects in the form of a story—a research program. What vision underlies the program?
  • Here’s what I want to see when I read a description of a completed project.
    • The motivation for the project: This point ensures that the reader will care enough to read the rest of the description.
    • Crucial background information
    • The physical setup
    • A statement of the problem
    • Why the problem is difficult or, if relevant, how long the problem has remained open
    • Which mathematical toolkit you used to solve the problem or which conceptual insight unlocked the solution
    • Which technical or conceptual contribution you provided
    • Whom you collaborated with: Wide collaboration can signal a researcher’s maturity. If you collaborated with researchers at other institutions, name the institutions and, if relevant, their home countries. If you led the project, tell me that, too. If you collaborated with a well-known researcher, mentioning their name might help the reader situate your work within the research landscape they know. But avoid name-dropping, which lacks such a pedagogical purpose and which can come across as crude.
    • Your result’s significance/upshot/applications/impact: Has a lab based an experiment on your theoretical proposal? Does your simulation method outperform its competitors by X% in runtime? Has your mathematical toolkit found applications in three subfields of quantum physics? Consider mentioning whether a competitive conference or journal has accepted your results: QIP, STOC, Physical Review Letters, Nature Physics, etc. But such references shouldn’t serve as a crutch in conveying your results’ significance. You’ll impress me most by dazzling me with your physics; name-dropping venues instead can convey arrogance.
  • Not all past projects deserve the same amount of space. Tell a cohesive story. For example, you might detail one project, then synopsize two follow-up projects in two sentences.
  • A research statement must be high-level, because you don’t have space to provide details. Use mostly prose; and communicate intuition, including with simple examples. But sprinkle in math, such as notation that encapsulates a phrase in one concise symbol.

  • Be concrete, and illustrate with examples. Many physicists—especially theorists—lean toward general, abstract statements. The more general a statement is, we reason, the more systems it describes, so the more powerful it is. But humans can’t visualize and intuit about abstractions easily. Imagine a reader who has four minutes to digest your research statement before proceeding to the next 50 applications. As that reader flys through your writing, vague statements won’t leave much of an impression. So draw, in words, a picture that readers can visualize. For instance, don’t describe only systems, subsystems, and control; invoke atoms, cavities, and lasers. After hooking your reader with an image, you can generalize from it.
  • A research statement not only describes past projects, but also sketches research plans. Since research covers terra incognita, though, plans might sound impossible. How can you predict the unknown—especially the next five years of the unknown (as required if you’re applying for a faculty position), especially if you’re a theorist? Show that you’ve developed a map and a compass. Sketch the large-scale steps that you anticipate taking. Which mathematical toolkits will you leverage? What major challenge do you anticipate, and how do you hope to overcome it? Let me know if you’ve undertaken preliminary studies. Do numerical experiments support a theorem you conjecture?
  • When I was applying for faculty positions, a mentor told me the following: many a faculty member can identify a result (or constellation of results) that secured them an offer, as well as a result that earned them tenure. Help faculty-hiring committees identify the offer result and the tenure result.
  • Introduce notation before using it. If you use notation and introduce it afterward, the reader will encounter the notation; stop to puzzle over it; tentatively continue; read the introduction of the notation; return to the earlier use of the notation, to understand it; and then continue forward, including by rereading the introduction of the notation. This back-and-forth breaks up the reading process, which should flow smoothly.
  • Avoid verbs that fail to relate that you accomplished anything: “studied,” “investigated,” “worked on,” etc. What did you prove, show, demonstrate, solve, calculate, compute, etc.?

  • Tailor a version of your research statement to every position. Is Fellowship Committee X seeking biophysicists, statistical physicists, mathematical physicists, or interdisciplinary scientists? Also, respect every application’s guidelines about length.
  • If you have room, end the statement with a recap and a statement of significance. Yes, you’ll be repeating ideas mentioned earlier. But your reader’s takeaway hinges on the last text they read. End on a strong note, presenting a coherent vision.

  • Read examples. Which friends and colleagues, when applying for positions, have achieved success that you’d like to emulate? Ask if those individuals would share their research statements. Don’t take offense if they refuse; research statements are personal.

  • Writing is rewriting, a saying goes. Draft your research statement early, solicit feedback from a couple of mentors, edit the draft, and solicit more feedback.

Little ray of sunshine

A common saying goes, you should never meet your heroes, because they’ll disappoint you. But you shouldn’t trust every common saying; some heroes impress you more, the better you know them. Ray Laflamme was such a hero.

I first heard of Ray in my undergraduate quantum-computation course. The instructor assigned two textbooks: the physics-centric “Schumacher and Westmoreland” and “Kaye, Laflamme, and Mosca,” suited to computer scientists. Back then—in 2011—experimentalists were toiling over single quantum logic gates, implemented on pairs and trios of qubits. Some of today’s most advanced quantum-computing platforms, such as ultracold atoms, resembled the scrawnier of the horses at a racetrack. My class studied a stepping stone to those contenders: linear quantum optics (quantum light). Laflamme, as I knew him then, had helped design the implementation. 

Imagine my awe upon meeting Ray the following year, as a master’s student at the Perimeter Institute for Theoretical Physics. He belonged to Perimeter’s faculty and served as a co-director of the nearby Institute for Quantum Computing (IQC). Ray was slim, had thinning hair of a color similar to mine, and wore rectangular glasses frames. He often wore a smile, too. I can hear his French-Canadian accent in my memory, but not without hearing him smile at the ends of most sentences.

Photo credit: IQC

My master’s program entailed a research project, which I wanted to center on quantum information theory, one of Ray’s specialties. He met with me and suggested a project, and I began reading relevant papers. I then decided to pursue research with another faculty member and a postdoc, eliminating my academic claim on Ray’s time. But he agreed to keep meeting with me. Heaven knows how he managed; institute directorships devour one’s schedule like ravens dining on a battlefield. Still, we talked approximately every other week.

My master’s program intimidated me, I confessed. It crammed graduate-level courses, which deserved a semester each, into weeks. My class raced through Quantum Field Theory I and Quantum Field Theory II—a year’s worth of material—in part of an autumn. General relativity, condensed matter, and statistical physics swept over us during the same season. I preferred to learn thoroughly, deeply, and using strategies I’d honed over two decades. But I didn’t have time, despite arriving at Perimeter’s library at 8:40 every morning and leaving around 9:30 PM.

In response, Ray confessed that his master’s program had intimidated him. Upon completing his undergraduate degree, Ray viewed himself as a nobody from nowhere. He chafed in the legendary, if idiosyncratically named, program he attended afterward: Part III of the Mathematical Tripos at the University of Cambridge. A Cambridge undergraduate can earn a master’s degree in three steps (tripos) at the Department of Applied Mathematics and Theoretical Physics. Other students, upon completing bachelor’s degrees elsewhere, undertake the third step to earn their master’s. Ray tackled this step, Part III.

He worked his rear off, delving more deeply into course material than lecturers did. Ray would labor over every premise in a theorem’s proof, including when nobody could explain the trickiest step to him.1 A friend and classmate helped him survive. The two studied together, as I studied with a few fellow Perimeter students; and Ray took walks with his friend on Sundays, as I planned lunches with other students on weekends.

Yet the program’s competitiveness appalled Ray. All students’ exam scores appeared on the same piece of paper, posted where everyone could read it. The department would retain the highest scorers in its PhD program; the other students would have to continue their studies elsewhere. Hearing about Ray’s program, I appreciated more than ever the collaboration characteristic of mine.

Ray addressed that trickiest proof step better than he’d feared, come springtime: his name appeared near the top of the exam list. Once he saw the grades, a faculty member notified him that his PhD advisor was waiting upstairs. Ray didn’t recall climbing those stairs, but he found Stephen Hawking at the top.

As one should expect of a Hawking student, Ray studied quantum gravity during his PhD. But by the time I met him, Ray had helped co-found quantum computation. He’d also extended his physics expertise as far from 1980s quantum gravity as one can, by becoming an experimentalist. The nobody from nowhere had earned his wings—then invented novel wings that nobody had dreamed of. But he descended from the heights every other week, to tell stories to a nobody of a master’s student.

The author’s copy of “Kaye, Laflamme, and Mosca”…
…in good company.

Seven and a half years later, I advertised openings in the research group I was establishing in Maryland. A student emailed from the IQC, whose co-directorship Ray had relinquished in 2017. The student had seen me present a talk, it had inspired him to switch fields into quantum thermodynamics, and he asked me to co-supervise his PhD. His IQC supervisor had blessed the request: Ray Laflamme.

The student was Shayan Majidy, now a postdoc at Harvard. Co-supervising him with Ray Laflamme reminded me of cooking in the same kitchen as Julia Child. I still wonder how I, green behind the ears, landed such a gig. Shayan delighted in describing the difference between his supervisors’ advising styles. An energetic young researcher,2 I’d respond to emails as early as 6:00 AM. I’d press Shayan about literature he’d read, walk him through what he hadn’t grasped, and toss a paper draft back and forth with him multiple times per day. Ray, who’d mellowed during his career, mostly poured out support and warmth like hollandaise sauce. 

Once, Shayan emailed Ray and me to ask if he could take a vacation. I responded first, as laconically as my PhD advisor would have: “Have fun!” Ray replied a few days later. He elaborated on his pleasure at Shayan’s plans and on how much Shayan deserved the break.

When I visited Perimeter in 2022, Shayan insisted on a selfie with both his PhD advisors.

This June, an illness took Ray earlier than expected. We physicists lost an intellectual explorer, a co-founder of the quantum-computing community, and a scientist of my favorite type: a wonderful physicist who was a wonderful human being. Days after he passed, I was holed up in a New York hotel room, wincing over a web search. I was checking whether a quantum system satisfies certain tenets of quantum error correction, and we call those tenets the Knill–Laflamme conditions. Our community will keep checking the Knill–Laflamme conditions, keep studying quantum gates implementable with linear optics, and more. Part of Ray won’t leave us anytime soon—the way he wouldn’t leave a nobody of a master’s student who needed a conversation.

1For the record, some of the most rigorous researchers I know work in Cambridge’s Department of Applied Mathematics and Theoretical Physics today. I’ve even blogged about some

2As I still am, thank you very much.

A (quantum) complex legacy: Part trois

When I worked in Cambridge, Massachusetts, a friend reported that MIT’s postdoc association had asked its members how it could improve their lives. The friend confided his suggestion to me: throw more parties.1 This year grants his wish on a scale grander than any postdoc association could. The United Nations has designated 2025 as the International Year of Quantum Science and Technology (IYQ), as you’ve heard unless you live under a rock (or without media access—which, come to think of it, sounds not unappealing).

A metaphorical party cracker has been cracking since January. Governments, companies, and universities are trumpeting investments in quantum efforts. Institutions pulled out all the stops for World Quantum Day, which happens every April 14 but which scored a Google doodle this year. The American Physical Society (APS) suffused its Global Physics Summit in March with quantum science like a Bath & Body Works shop with the scent of Pink Pineapple Sunrise. At the summit, special symposia showcased quantum research, fellow blogger John Preskill dished about quantum-science history in a dinnertime speech, and a “quantum block party” took place one evening. I still couldn’t tell you what a quantum block party is, but this one involved glow sticks.

Google doodle from April 14, 2025

Attending the summit, I felt a satisfaction—an exultation, even—redolent of twelfth grade, when American teenagers summit the Mont Blanc of high school. It was the feeling that this year is our year. Pardon me while I hum “Time of your life.”2

Speakers and organizer of a Kavli Symposium, a special session dedicated to interdisciplinary quantum science, at the APS Global Physics Summit

Just before the summit, editors of the journal PRX Quantum released a special collection in honor of the IYQ.3 The collection showcases a range of advances, from chemistry to quantum error correction and from atoms to attosecond-length laser pulses. Collaborators and I contributed a paper about quantum complexity, a term that has as many meanings as companies have broadcast quantum news items within the past six months. But I’ve already published two Quantum Frontiers posts about complexity, and you surely study this blog as though it were the Bible, so we’re on the same page, right? 

Just joshing. 

Imagine you have a quantum computer that’s running a circuit. The computer consists of qubits, such as atoms or ions. They begin in a simple, “fresh” state, like a blank notebook. Post-circuit, they store quantum information, such as entanglement, as a notebook stores information post-semester. We say that the qubits are in some quantum state. The state’s quantum complexity is the least number of basic operations, such as quantum logic gates, needed to create that state—via the just-completed circuit or any other circuit.

Today’s quantum computers can’t create high-complexity states. The reason is, every quantum computer inhabits an environment that disturbs the qubits. Air molecules can bounce off them, for instance. Such disturbances corrupt the information stored in the qubits. Wait too long, and the environment will degrade too much of the information for the quantum computer to work. We call the threshold time the qubits’ lifetime, among more-obscure-sounding phrases. The lifetime limits the number of gates we can run per quantum circuit.

The ability to perform many quantum gates—to perform high-complexity operations—serves as a resource. Other quantities serve as resources, too, as you’ll know if you’re one of the three diehard Quantum Frontiers fans who’ve been reading this blog since 2014 (hi, Mom). Thermodynamic resources include work: coordinated energy that one can harness directly to perform a useful task, such as lifting a notebook or staying up late enough to find out what a quantum block party is. 

My collaborators: Jonas Haferkamp, Philippe Faist, Teja Kothakonda, Jens Eisert, and Anthony Munson (in an order of no significance here)

My collaborators and I showed that work trades off with complexity in information- and energy-processing tasks: the more quantum gates you can perform, the less work you have to spend on a task, and vice versa. Qubit reset exemplifies such tasks. Suppose you’ve filled a notebook with a calculation, you want to begin another calculation, and you have no more paper. You have to erase your notebook. Similarly, suppose you’ve completed a quantum computation and you want to run another quantum circuit. You have to reset your qubits to a fresh, simple state

Three methods suggest themselves. First, you can “uncompute,” reversing every quantum gate you performed.4 This strategy requires a long lifetime: the information imprinted on the qubits by a gate mustn’t leak into the environment before you’ve undone the gate. 

Second, you can do the quantum equivalent of wielding a Pink Pearl Paper Mate: you can rub the information out of your qubits, regardless of the circuit you just performed. Thermodynamicists inventively call this strategy erasure. It requires thermodynamic work, just as applying a Paper Mate to a notebook does. 

Third, you can

Suppose your qubits have finite lifetimes. You can undo as many gates as you have time to. Then, you can erase the rest of the qubits, spending work. How does complexity—your ability to perform many gates—trade off with work? My collaborators and I quantified the tradeoff in terms of an entropy we invented because the world didn’t have enough types of entropy.5

Complexity trades off with work not only in qubit reset, but also in data compression and likely other tasks. Quantum complexity, my collaborators and I showed, deserves a seat at the great soda fountain of quantum thermodynamics.

The great soda fountain of quantum thermodynamics

…as quantum information science deserves a seat at the great soda fountain of physics. When I embarked upon my PhD, faculty members advised me to undertake not only quantum-information research, but also some “real physics,” such as condensed matter. The latter would help convince physics departments that I was worth their money when I applied for faculty positions. By today, the tables have turned. A condensed-matter theorist I know has wound up an electrical-engineering professor because he calculates entanglement entropies.

So enjoy our year, fellow quantum scientists. Party like it’s 1925. Burnish those qubits—I hope they achieve the lifetimes of your life.

1Ten points if you can guess who the friend is.

2Whose official title, I didn’t realize until now, is “Good riddance.” My conception of graduation rituals has just turned a somersault. 

3PR stands for Physical Review, the brand of the journals published by the APS. The APS may have intended for the X to evoke exceptional, but I like to think it stands for something more exotic-sounding, like ex vita discedo, tanquam ex hospitio, non tanquam ex domo.

4Don’t ask me about the notebook analogue of uncomputing a quantum state. Explaining it would require another blog post.

5For more entropies inspired by quantum complexity, see this preprint. You might recognize two of the authors from earlier Quantum Frontiers posts if you’re one of the three…no, not even the three diehard Quantum Frontiers readers will recall; but trust me, two of the authors have received nods on this blog before.

The most steampunk qubit

I never imagined that an artist would update me about quantum-computing research.

Last year, steampunk artist Bruce Rosenbaum forwarded me a notification about a news article published in Science. The article reported on an experiment performed in physicist Yiwen Chu’s lab at ETH Zürich. The experimentalists had built a “mechanical qubit”: they’d stored a basic unit of quantum information in a mechanical device that vibrates like a drumhead. The article dubbed the device a “steampunk qubit.”

I was collaborating with Bruce on a quantum-steampunk sculpture, and he asked if we should incorporate the qubit into the design. Leave it for a later project, I advised. But why on God’s green Earth are you receiving email updates about quantum computing? 

My news feed sends me everything that says “steampunk,” he explained. So keeping a bead on steampunk can keep one up to date on quantum science and technology—as I’ve been preaching for years.

Other ideas displaced Chu’s qubit in my mind until I visited the University of California, Berkeley this January. Visiting Berkeley in January, one can’t help noticing—perhaps with a trace of smugness—the discrepancy between the temperature there and the temperature at home. And how better to celebrate a temperature difference than by studying a quantum-thermodynamics-style throwback to the 1800s?

One sun-drenched afternoon, I learned that one of my hosts had designed another steampunk qubit: Alp Sipahigil, an assistant professor of electrical engineering. He’d worked at Caltech as a postdoc around the time I’d finished my PhD there. We’d scarcely interacted, but I’d begun learning about his experiments in atomic, molecular, and optical physics then. Alp had learned about my work through Quantum Frontiers, as I discovered this January. I had no idea that he’d “met” me through the blog until he revealed as much to Berkeley’s physics department, when introducing the colloquium I was about to present.

Alp and collaborators proposed that a qubit could work as follows. It consists largely of a cantilever, which resembles a pendulum that bobs back and forth. The cantilever, being quantum, can have only certain amounts of energy. When the pendulum has a particular amount of energy, we say that the pendulum is in a particular energy level. 

One might hope to use two of the energy levels as a qubit: if the pendulum were in its lowest-energy level, the qubit would be in its 0 state; and the next-highest level would represent the 1 state. A bit—a basic unit of classical information—has 0 and 1 states. A qubit can be in a superposition of 0 and 1 states, and so the cantilever could be.

A flaw undermines this plan, though. Suppose we want to process the information stored in the cantilever—for example, to turn a 0 state into a 1 state. We’d inject quanta—little packets—of energy into the cantilever. Each quantum would contain an amount of energy equal to (the energy associated with the cantilever’s 1 state) – (the amount associated with the 0 state). This equality would ensure that the cantilever could accept the energy packets lobbed at it.

But the cantilever doesn’t have only two energy levels; it has loads. Worse, all the inter-level energy gaps equal each other. However much energy the cantilever consumes when hopping from level 0 to level 1, it consumes that much when hopping from level 1 to level 2. This pattern continues throughout the rest of the levels. So imagine starting the cantilever in its 0 level, then trying to boost the cantilever into its 1 level. We’d probably succeed; the cantilever would probably consume a quantum of energy. But nothing would stop the cantilever from gulping more quanta and rising to higher energy levels. The cantilever would cease to serve as a qubit.

We can avoid this problem, Alp’s team proposed, by placing an atomic-force microscope near the cantilever. An atomic force microscope maps out surfaces similarly to how a Braille user reads: by reaching out a hand and feeling. The microscope’s “hand” is a tip about ten nanometers across. So the microscope can feel surfaces far more fine-grained than a Braille user can. Bumps embossed on a page force a Braille user’s finger up and down. Similarly, the microscope’s tip bobs up and down due to forces exerted by the object being scanned. 

Imagine placing a microscope tip such that the cantilever swings toward it and then away. The cantilever and tip will exert forces on each other, especially when the cantilever swings close. This force changes the cantilever’s energy levels. Alp’s team chose the tip’s location, the cantilever’s length, and other parameters carefully. Under the chosen conditions, boosting the cantilever from energy level 1 to level 2 costs more energy than boosting from 0 to 1.

So imagine, again, preparing the cantilever in its 0 state and injecting energy quanta. The cantilever will gobble a quantum, rising to level 1. The cantilever will then remain there, as desired: to rise to level 2, the cantilever would have to gobble a larger energy quantum, which we haven’t provided.1

Will Alp build the mechanical qubit proposed by him and his collaborators? Yes, he confided, if he acquires a student nutty enough to try the experiment. For when he does—after the student has struggled through the project like a dirigible through a hurricane, but ultimately triumphed, and a journal is preparing to publish their magnum opus, and they’re brainstorming about artwork to represent their experiment on the journal’s cover—I know just the aesthetic to do the project justice.

1Chu’s team altered their cantilever’s energy levels using a superconducting qubit, rather than an atomic force microscope.

Quantum automata

Do you know when an engineer built the first artificial automaton—the first human-made machine that operated by itself, without external control mechanisms that altered the machine’s behavior over time as the machine undertook its mission?

The ancient Greek thinker Archytas of Tarentum reportedly created it about 2,300 years ago. Steam propelled his mechanical pigeon through the air.

For centuries, automata cropped up here and there as curiosities and entertainment. The wealthy exhibited automata to amuse and awe their peers and underlings. For instance, the French engineer Jacques de Vauconson built a mechanical duck that appeared to eat and then expel grains. The device earned the nickname the Digesting Duck…and the nickname the Defecating Duck.

Vauconson also invented a mechanical loom that helped foster the Industrial Revolution. During the 18th and 19th centuries, automata began to enable factories, which changed the face of civilization. We’ve inherited the upshots of that change. Nowadays, cars drive themselves, Roombas clean floors, and drones deliver packages.1 Automata have graduated from toys to practical tools.2

Rather, classical automata have. What of their quantum counterparts?

Scientists have designed autonomous quantum machines, and experimentalists have begun realizing them. The roster of such machines includes autonomous quantum engines, refrigerators, and clocks. Much of this research falls under the purview of quantum thermodynamics, due to the roles played by energy in these machines’ functioning: above, I defined an automaton as a machine free of time-dependent control (exerted by a user). Equivalently, according to a thermodynamicist mentality, we can define an automaton as a machine on which no user performs any work as the machine operates. Thermodynamic work is well-ordered energy that can be harnessed directly to perform a useful task. Often, instead of receiving work, an automaton receives access to a hot environment and a cold environment. Heat flows from the hot to the cold, and the automaton transforms some of the heat into work.

Quantum automata appeal to me because quantum thermodynamics has few practical applications, as I complained in my previous blog post. Quantum thermodynamics has helped illuminate the nature of the universe, and I laud such foundational insights. Yet we can progress beyond laudation by trying to harness those insights in applications. Some quantum thermal machines—quantum batteries, engines, etc.—can outperform their classical counterparts, according to certain metrics. But controlling those machines, and keeping them cold enough that they behave quantum mechanically, costs substantial resources. The machines cost more than they’re worth. Quantum automata, requiring little control, offer hope for practicality. 

To illustrate this hope, my group partnered with Simone Gasparinetti’s lab at Chalmer’s University in Sweden. The experimentalists created an autonomous quantum refrigerator from superconducting qubits. The quantum refrigerator can help reset, or “clear,” a quantum computer between calculations.

Artist’s conception of the autonomous-quantum-refrigerator chip. Credit: Chalmers University of Technology/Boid AB/NIST.

After we wrote the refrigerator paper, collaborators and I raised our heads and peered a little farther into the distance. What does building a useful autonomous quantum machine take, generally? Collaborators and I laid out guidelines in a “Key Issues Review” published in Reports in Progress on Physics last November.

We based our guidelines on DiVincenzo’s criteria for quantum computing. In 1996, David DiVincenzo published seven criteria that any platform, or setup, must meet to serve as a quantum computer. He cast five of the criteria as necessary and two criteria, related to information transmission, as optional. Similarly, our team provides ten criteria for building useful quantum automata. We regard eight of the criteria as necessary, at least typically. The final two, optional guidelines govern information transmission and machine transportation. 

Time-dependent external control and autonomy

DiVincenzo illustrated his criteria with multiple possible quantum-computing platforms, such as ions. Similarly, we illustrate our criteria in two ways. First, we show how different quantum automata—engines, clocks, quantum circuits, etc.—can satisfy the criteria. Second, we illustrate how quantum automata can consist of different platforms: ultracold atoms, superconducting qubits, molecules, and so on.

Nature has suggested some of these platforms. For example, our eyes contain autonomous quantum energy transducers called photoisomers, or molecular switches. Suppose that such a molecule absorbs a photon. The molecule may use the photon’s energy to switch configuration. This switching sets off chemical and neurological reactions that result in the impression of sight. So the quantum switch transduces energy from light into mechanical, chemical, and electric energy.

Photoisomer. (Image by Todd Cahill, from Quantum Steampunk.)

My favorite of our criteria ranks among the necessary conditions: every useful quantum automata must produce output worth the input. How one quantifies a machine’s worth and cost depends on the machine and on the user. For example, an agent using a quantum engine may care about the engine’s efficiency, power, or efficiency at maximum power. Costs can include the energy required to cool the engine to the quantum regime, as well as the control required to initialize the engine. The agent also chooses which value they regard as an acceptable threshold for the output produced per unit input. I like this criterion because it applies a broom to dust that we quantum thermodynamicists often hide under a rug: quantum thermal machines’ costs. Let’s begin building quantum engines that perform more work than they require to operate.

One might object that scientists and engineers are already sweating over nonautonomous quantum machines. Companies, governments, and universities are pouring billions of dollars into quantum computing. Building a full-scale quantum computer by hook or by crook, regardless of classical control, is costing enough. Eliminating time-dependent control sounds even tougher. Why bother?

Fellow Quantum Frontiers blogger John Preskill pointed out one answer, when I described my new research program to him in 2022: control systems are classical—large and hot. Consider superconducting qubits—tiny quantum circuits—printed on a squarish chip about the size of your hand. A control wire terminates on each qubit. The rest of the wire runs off the edge of the chip, extending to classical hardware standing nearby. One can fit only so many wires on the chip, so one can fit only so many qubits. Also, the wires, being classical, are hotter than the qubits should be. The wires can help decohere the circuits, introducing errors into the quantum information they store. The more we can free the qubits from external control—the more autonomy we can grant them—the better.

Besides, quantum automata exemplify quantum steampunk, as my coauthor Pauli Erker observed. I kicked myself after he did, because I’d missed the connection. The irony was so thick, you could have cut it with the retractible steel knife attached to a swashbuckling villain’s robotic arm. Only two years before, I’d read The Watchmaker of Filigree Street, by Natasha Pulley. The novel features a Londoner expatriate from Meiji Japan, named Mori, who builds clockwork devices. The most endearing is a pet-like octopus, called Katsu, who scrambles around Mori’s workshop and hoards socks. 

Does the world need a quantum version of Katsu? Not outside of quantum-steampunk fiction…yet. But a girl can dream. And quantum automata now have the opportunity to put quantum thermodynamics to work.

From tumblr

1And deliver pizzas. While visiting the University of Pittsburgh a few years ago, I was surprised to learn that the robots scurrying down the streets were serving hungry students.

2And minions of starving young scholars.