To become a good teacher, ignore everything you’re told and learn from the masters (part 2 of 4)

In the previous post in this series, I described some teaching skills that I subconsciously absorbed by reading works by Feynman. I also described some frustrations I had with what we were told to do in TA training.

What I learned from Preskill

Luckily for me, and hopefully for my students, the instructor for the first class I was a TA for (the upper division classical electrodynamics course) eventually gave me the freedom to really do things how I would want to, which, when I saw the results, led me to really ignore everything I was told. During the last week of the course, he said I could do whatever I wanted in the recitation sections since he was going to do review and talk about some advanced topics in lecture. It’s hard to know how all my experiences with good (and bad) teachers subconsciously influenced my teaching style, but the first time I remember consciously thinking about what kind of a teacher I wanted to be was the night before my first recitation section of the week, while I was planning my last lecture of the course. I distinctly remember reflecting on the following memories from my time at the IQI while trying to decide what to talk about and how to say it.

Once a week, John would run a two part group meeting. The first part consisted of everyone going around the room briefly summarizing what they had worked on for the past week, while the second consisted of a more traditional lecture about a specific topic of the speaker’s choice. At one point, one of the postdocs was in the middle of giving a series of lectures on a very technical subject. I was always struggling to follow them and stay interested and engaged in the discussion. I remember almost nothing from this particular series of lectures other than that the postdoc seemed to be trying to teach us every single detail about the subject rather than trying to give us a general feeling for what it was about. I’m sure it wasn’t so bad for the more advanced physicists in the room, and I bet I would get more out of them if I heard them again today.

But then one marvelous week, John decided he was going to give the lecture instead. He started off by saying something along the lines of, “We have heard some very technical talks recently, which is good, and I have learned a lot from them. But sometimes it’s also good just to look at pictures.” He proceeded to give an extremely interesting, coherent, and inspiring lecture on black hole complementarity. I don’t think he ever wrote down a single equation, but I remember most of what he talked about and the pictures he drew to this day. I was honestly sad1 when the hour was up and was extremely excited to learn more. As soon as I got home that night, I read many papers on the subject of black holes and information, some of them John’s of course,2 for several hours and couldn’t have managed to get more than three hours of sleep.

This was not a unique experience with John’s masterful teaching technique. The summer I spent working at the IQI was one of the happiest times of my life since I got to spend so much time with so many scientists who I wasn’t even working with, including John. The project that I was supposed to be working on at the IQI was supervised by (then postdoc) Alexey Gorshkov and dealt with two-dimensional spin systems and efforts to simulate them experimentally. Although I greatly enjoyed working on that project, which actually went pretty well and led to my first paper, by far my favorite part of working at the IQI was getting to eat lunch with John and the rest of the group, in particular (then postdoc) Steve Flammia.

Most days as we would walk back to the IQI from the cafeteria, Steve would ask John some question, usually about quantum field theory or cosmology. (For example, “Why do some classical symmetries not survive quantization?”) By the time we got back to the lounge, John would have prepared the perfect lecture to answer Steve’s question, enlightening both to the most accomplished postdoc and the most naive undergrad. These lectures were amazing. I wish we had taped them so that I could watch them again. John did not shy away from equations when they were called for in these lectures, but they were still filled with pictures. (See Steve’s recollections of these lectures here and John’s here. The closest recorded lectures to John’s lunch lectures that I am aware of are some of Lenny Susskind’s more advanced courses from The Theoretical Minimum.3 The main difference between the two styles is that, due to the large discrepancy between the two audiences, John would compress something Susskind might explain into maybe a third to a quarter of the time Susskind would take. On occasion, John might use some slightly more sophisticated technology or go into a little more detail as well, but the essential style is very similar.)

I think John knew that I loved these lectures, but what he and Alexey might not know is that they were extremely detrimental to my productivity on the project that “I was supposed to be working on,” though I don’t think John would see it that way. After each of these lectures, I was forced to spend at least an hour reading textbooks or journal articles going into more detail on the topics John had just so masterfully discussed. Since I shared an office with Alexey, I often tried to hide what I was actually doing before getting back to work; I don’t think Alexey would have cared, but I wasn’t taking any chances. When I say “I was forced,” I literally mean that listening to John put me in a state of mind where I felt I had no choice but to read more. (Maybe John’s distinctive bedtime story voice makes him a kind of “snake charmer” of physicists by hypnotizing us into reading more physics.) Since John’s lectures always cut straight to the heart of any subject, this was the perfect way to learn something new or to clarify something found confusing before. Armed with a Preskill lecture and all the nice pictures fresh in my mind, it always seemed so easy to just start reading a technical account of something that I would certainly have found difficult without John’s introduction to it.

John Preskill

Figure 2.1: John Preskill, a “snake charmer” of physicists. Artwork by my uncle Eric Wayne.

Eventually, I was allowed to ask John the question on occasion, and sometimes Steve and I would discuss what we should ask John on the way back before we left for lunch. Of course, this great responsibility only caused me to read even more about things that “I was not supposed to be working on” so that we would have a better chance of having a real gem. (Occasionally, I was devastated to learn that Steve had already asked John some question that I had thought of like, “Why is CP violated?” I really wanted to hear that lecture, but Steve had already asked it, and there were no repeats.)

At the time, Steve claimed that his upcoming research appointment at the University of Washington required him to increase his knowledge of physics outside of quantum information and that asking John these questions was the perfect way to do that. This is partially accurate, though the truth is that Steve actually “knew” the answers, in a technical sense, to most of the questions he asked John; what was really important was to get an intuitive picture that could easily be lost when hearing or reading a very in-depth technical account of something. He wanted to “hear the story from a master” and in the process learn both some awesome physics and John’s “style,” i.e. to be able to give a deep, simple, and well organized argument on a wide range of subjects at a moments notice.4 In this sense, it almost didn’t matter what subject John actually lectured on, and I think this was the main reason for the somewhat vague “Why?” format in which most of these questions were phrased. Luckily for me, and my future students, I was able to get a good enough look at John’s “style” as well that I would be able to make an (imperfect) imitation when I became a TA about a year later.

In the next post, I’ll describe how, by trying to imitate John, I seemed to become a fairly popular TA.


  1. It might sound strange to be sad when a lecture is over, but that’s really the emotion I felt. Two other professors from my Caltech days, Niles Pierce and Hirosi Ooguri, come to mind whose lectures consistently made me sad when they were over—but in an excited way analogous to how one might feel when the episode of a favorite TV show ends while waiting for the next week. (These lectures on advanced mathematical methods in physics were the Ooguri lectures that made me really sad and are actually in English.) 
  2. I particularly remember reading about how black holes are mirrors and comments on a black hole’s final state. (Though see this paper, or this talk, for updated comments on the latter in light of the recent firewall controversy.) I also remember reading Susskind et. al.’s original paper on the subject that night. 
  3. The title for his courses is in reference to a comprehensive course of physics study that Lev Landau expected all of his students to pass. See here for an amusing, and somewhat terrifying, first hand account of what it was like to be one of the 43 students “to pass Landau’s minimum.” 
  4. S. Flammia, private correspondence. 

To become a good teacher, ignore everything you’re told and learn from the masters (part 1 of 4)

Editor’s Note: Kevin Kuns, a physics concentrator in the Caltech Class of 2012, received the D. S. Kothari Prize in Physics for undergraduate research conducted at Caltech’s Institute for Quantum Information.  Now a graduate student at University of California at Santa Barbara, Kevin won an Outstanding Teaching Assistant Award there. Bursting with pride upon hearing from Kevin that his IQI experiences had contributed to his teaching success, we urged Kevin to tell his story. This took some arm twisting because of Kevin’s inherent modesty, especially when it became clear that Kevin had more to say than could comfortably fit into one blog post. But we persevered, and we’re glad we did! We hope you enjoy Kevin’s series of four posts, starting with this one.

This is the story of how—by ignoring what I was told to do and instead trying to reproduce the conditions that made me so excited about physics by trying to imitate key aspects of the people who inspired me—I won the Outstanding Teaching Assistant Award from the UCSB physics department at the end of my first year there as a grad student.1 Many of the things that inspired me to become a good teacher occurred while working at the IQI as an undergrad at Caltech, which I guess is what qualifies me to write this series of posts. Since my advice is to ignore what people tell you and to do what works for you, you should also ignore everything I say—except for the parts that work for you. While I’m certainly not a master, I hope the extensive scientific references, mainly found in the footnotes (especially in the later posts) and easily skipped by the laymen, will provide the more technically inclined readers of all levels with the resources to learn some exciting physics from the real masters.

Hat

Figure 1.1: The only baseball cap I own. There was no “and Matter” when I was there, but I remember a lot of excitement about the upcoming addition of the “M” when John announced it at the very end of my time there.

I’ll start by recounting some of the things that excited me about physics to such a degree that I was then forced to spend a considerable amount of time learning more on my own. Then I’ll move on to how I learned from them as a TA.

While there are many people who have influenced my teaching style, the two biggest influences are Richard Feynman and John Preskill. Though I never got to know Feynman, I had the extreme good fortune of actually getting to talk with John somewhat frequently. I think I used the lessons I learned from Feynman, probably mostly absorbed subconsciously, effectively in my teaching, both in lecture and one-on-one with students in office hours, to become a competent TA. But I think I became a good TA when I decided to try to imitate John.

Since Feynman came first, I’ll start with him.

What I learned from Feynman

I’ve been interested in science for as long as I can remember, but I became laser focussed on physics when my parents bought me some of the audio to The Feynman Lectures on Physics for Christmas when I was in ninth grade. I couldn’t understand much of it at the time, especially without the pictures or equations to go along with the audio, but after (I think three times) listening to the lecture on the double slit experiment, I was able to piece together what was going on. I thought I must have misunderstood—maybe I guessed the geometry of the slits, the screen, and the electron gun incorrectly?—and listened to it several more times to figure out where I went wrong. But I hadn’t misunderstood: that’s how the world really works!2

Feynman Lectures

Figure 1.2: The best Christmas present I ever had: 12 of Feynman’s lectures on quantum mechanics. In hindsight, a more appropriate gift for a complete novice who’s never taken a physics class in his life would be the version of Six Easy Pieces that comes with the audio and which includes the double slit experiment as the last chapter.

I had to know more and had absolutely no patience in doing so. Within a year, and before having ever taken a physics class, I read QED: The Strange Theory of Light and Matter,3 then The Character of Physical Law,4 then Six Easy Pieces, then Six Not-So-Easy Pieces, then I got the full three volume set. I picked up the necessary math along the way and started branching away from only reading things that Feynman wrote5 and eventually read many of the classic textbooks you would use in an undergrad course on physics. But since Feynman was the initial source of my excitement about physics, I also read much of his non-technical stuff and learned a lot of lessons from that as well.

I think the most important non-technical lesson I learned was the importance of being able to explain things simply and clearly, but without lying or changing the essence of the phenomenon in anyway. Probably inspired by a line from Cargo Cult Science, “The first principle is that you must not fool yourself—and you are the easiest person to fool,” I have, beginning in high school, developed an internal check system to ensure that I really understand new things and am not fooling myself. Right now it works like this (I’m sure Feynman said similar things that caused me to do this, but I don’t remember where at the moment): First, I think about how I would explain something to one of my colleagues—a fellow grad student. Then I think about how I would explain it to an undergrad, then to a high school student studying physics, then to my parents or my little sister. The further down I get, the better I understand something; but if I can’t get all the way down, then I don’t really understand it. There are not many things that I really understand, but there are a few.

Going into teaching with this attitude was probably pretty helpful. In my opinion, learning from your students is one of the funnest parts of teaching. There are usually many ways to understand a concept and apply it to certain problems, and sometimes there’s “an obviously easier” approach or way of thinking that is useful in certain circumstances. But to get to the point where you’re “qualified” to be a teacher, you only had to understand things in whatever way worked for you. To be a competent teacher, on the other hand, requires you to understand every way one of your students could possibly understand it so that you can explain things in whatever way is best for each individual student. Maybe if a student doesn’t understand something, it’s really your fault for not explaining it well or for never really giving them the chance in the first place. If they can’t understand something, maybe that means that you don’t really understand it as well as you thought you did—and then you get to learn something too! In this vein, I think student mistakes can also be really fun ways for even you to understand things better because it forces you to really understand why they were wrong, which can sometimes be rather subtle. I would not be surprised if I learned more from my students’ mistakes and misconceptions than they learned from me.6

The most frustrating part of TA training for me was the implicit, and sometimes explicit, message that your students are idiots who need to have their hands held through everything. I’ve been guilty of ridiculing some particularly ignorant mistakes in private myself, but, at least for me, the real frustration was that the system allowed these mistakes to propagate so far and not with the students themselves—many of whom were really trying and just not getting the help they needed in the way they needed it. All the things that we were “trained to do” basically catered to the students struggling the most and left the most talented students to fend for themselves.7 I have absolutely no problem helping the students struggling the most; I think I demonstrated that with the patience I had in dealing with some very confused questions in office hours. Sometimes this required going back through years of accumulated misunderstandings to get to the real source of the problem, but I don’t think I ever became short or condescending to them. But a lot of the things we were told to do were, quite frankly, condescending. I believe that even confused students are not stupid and can quickly recognize when they are being talked down to. There’s a difference between simplifying—what people like Feynman and Preskill do with great skill—and dumbing down; never choose the later.8

Even though I ignored this silly advice right from the beginning, I still mostly covered the kinds of things I was supposed to even if it wasn’t necessarily in the way I was supposed to do it. I tried to add some more interesting material as side comments in recitation section or as tangents in the solution sets, but, ignoring my instincts, I still mostly just did what was already done in lecture or on the homework, in painful detail, again in recitation section as I was told to do. Unless you’re completely lost, this would be incredibly boring; and if you’re really that lost, it’s probably just better to go to office hours and get one-on-one help anyway. I wouldn’t have gone to my own early recitation sections if I was an undergrad; in fact, after going to a few as a new freshman and realizing what they’re traditionally about, I never went to another during my entire undergrad career.

In the next post, I’ll describe some memories of my time at the IQI, which, when I thought about them, caused me to give recitation sections that I would have gone to as an undergrad, and which some of the UCSB undergrads seemed to appreciate as well.


  1. As I hope will become clear in the later posts, the award itself means a lot to me because of the interactions with students that suggest that I was actually successful. 
  2. I highly recommend finding the audio for that lecture; there’s no substitute for hearing Feynman describe it himself. There’s a sense of excitement, and a bit of humor, that is somewhat lost if you just read the text. (There must have been some reason why I listened to that one lecture so many times before I had any idea about what was going on.) I can still hear Feynman describe how electrons (don’t) behave, “They do not behave like waves. They do not behave like particles. They do not behave like clouds, nor like billiard balls, nor like weights on springs, nor like anything that you know anything about.” And man is the way they do behave exciting! 
  3. You can watch his original lectures here
  4. You can watch his original lectures here
  5. Or, more accurately, transcriptions of things that he said. One of the great things about Feynman is that, if you try hard enough, you can usually find the video or audio to something he “wrote,” as long as it’s not something like a journal article which he actually wrote. 
  6. My favorite example from personal experience is when almost half the class solved an electrostatics midterm problem in a completely ridiculous and wrong way. In trying to understand how so many people could have made the exact same mistake, I realized that what they were trying to do would have been essentially correct if we lived in a world with two spatial dimensions instead of three! What most of them had done, without realizing it, was equivalent to correctly using the two-dimensional Coulomb’s Law. So then I got to tell them how Coulomb’s Law in 2d falls off as r^{-1}, instead of r^{-2}, which opened the door for me to tell them about electrostatics in general dimensions. Instead of just ridiculing them for blindly plugging stuff into equations which they clearly didn’t understand, everyone got to learn something—even the students who did it correctly. 
  7. To use an overly precise simile that nevertheless qualitatively captures what I feel we were told, it was as if we were, at best, supposed to only really try to help students up to 1\sigma past the mean of the distribution. But I think the result of this was that we only helped students up to 1\sigma before the mean. 
  8. I consider QED to be a prime example of simplifying. Probably any motivated layman could understand the arguments in that book without too much difficulty. I grasped them quickly: I remember drawing all of the little arrows to reproduce Feynman’s arguments several times while bored and sitting in the back of biology in ninth grade. But there’s no way I could have come anywhere close to understanding the arguments in even the great books discussed in footnote 5 of the third post at the time: I hadn’t even learned any calculus yet, though I would within a few more months. (I still consider the books in that footnote to be good examples of simplifying; they’re just simplified for a more sophisticated audience.) It wasn’t until about six years later, when I started learning QFT for the first time, when I fully appreciated how truly brilliant Feynman’s explanation is. He really captures the essence of the physics; it’s only the technical details that are missing. For an example of dumbing down, consider some of the popular science treatments of cutting edge physics. Many (but not all!) of these explanations use oversimplified examples that miss a lot of the physics and make, for example, string theory sound a lot more silly than it really is without conveying the deep reasons why it’s an important thing to think about. Maybe we can’t all be exactly like the great simplifiers, but by trying to at least, we can probably eventually become pretty good. 

Actions do change the world.

I heard it in a college lecture about Haskell.

Haskell is a programming language akin to Latin: Learning either language expands your vocabulary and technical skills. But programmers use Haskell as often as slam poets compose dactylic hexameter.*

My professor could have understudied for the archetypal wise man: He had snowy hair, a beard, and glasses that begged to be called “spectacles.” Pointing at the code he’d projected onto a screen, he was lecturing about input/output, or I/O. The user inputs a request, and the program outputs a response.

That autumn was consuming me. Computer-science and physics courses had filled my plate. Atop the plate, I had thunked the soup tureen known as “XKCD Comes to Dartmouth”: I was coordinating a visit by Randall Munroe, creator of the science webcomic xkcd, to my college. The visit was to include a cake shaped like the Internet, a robotic velociraptor, and playpen balls.  The output I’d promised felt offputting.

My professor knew. We sat in his office for hours each week, dispatching my questions about recursion and monads and complexity. His input shaped the functional-programming skills I apply today, and my input shaped his lecture notes. He promised to attend my event.

Most objects coded in Haskell, my professor reminded us in that lecture, remain static. The Haskell world never changes. Even the objects called “variables” behave like constants. Exceptions, my professor said, crop up in I/O. Users can affect a program through objects called “actions.”

“Actions,” he said, “do change the world.”

I caught my breath. What a zinger, I thought. What a moral. What a lesson for the ages—and from the mouths of computer scientists.

My professor had no idea. He swanned on about I/O without changing tone.

That December, I gave my professor a plaque that read, “Actions do change the world.” Around his slogan, I’d littered illustrations of fractals, Pascal’s triangle, and other subjects we’d studied. My professor’s actions had changed my world for the better.

Drysdale photo 2

You can change the world by writing code that revolutionizes physics or finance. You can change the world by writing code that limps through tasks but improves your understanding. You can change the world by helping someone understand code. You can change the world by understanding someone.

A new year is beginning. Which actions will you take?

 

*Not that I recommend studying Haskell to boost your verbal SAT score.

Bell’s inequality 50 years later

This is a jubilee year.* In November 1964, John Bell submitted a paper to the obscure (and now defunct) journal Physics. That paper, entitled “On the Einstein Podolsky Rosen Paradox,” changed how we think about quantum physics.

The paper was about quantum entanglement, the characteristic correlations among parts of a quantum system that are profoundly different than correlations in classical systems. Quantum entanglement had first been explicitly discussed in a 1935 paper by Einstein, Podolsky, and Rosen (hence Bell’s title). Later that same year, the essence of entanglement was nicely and succinctly captured by Schrödinger, who said, “the best possible knowledge of a whole does not necessarily include the best possible knowledge of its parts.” Schrödinger meant that even if we have the most complete knowledge Nature will allow about the state of a highly entangled quantum system, we are still powerless to predict what we’ll see if we look at a small part of the full system. Classical systems aren’t like that — if we know everything about the whole system then we know everything about all the parts as well. I think Schrödinger’s statement is still the best way to explain quantum entanglement in a single vigorous sentence.

To Einstein, quantum entanglement was unsettling, indicating that something is missing from our understanding of the quantum world. Bell proposed thinking about quantum entanglement in a different way, not just as something weird and counter-intuitive, but as a resource that might be employed to perform useful tasks. Bell described a game that can be played by two parties, Alice and Bob. It is a cooperative game, meaning that Alice and Bob are both on the same side, trying to help one another win. In the game, Alice and Bob receive inputs from a referee, and they send outputs to the referee, winning if their outputs are correlated in a particular way which depends on the inputs they receive.

But under the rules of the game, Alice and Bob are not allowed to communicate with one another between when they receive their inputs and when they send their outputs, though they are allowed to use correlated classical bits which might have been distributed to them before the game began. For a particular version of Bell’s game, if Alice and Bob play their best possible strategy then they can win the game with a probability of success no higher than 75%, averaged uniformly over the inputs they could receive. This upper bound on the success probability is Bell’s famous inequality.**

Classical and quantum versions of Bell's game. If Alice and Bob share entangled qubits rather than classical bits, then they can win the game with a higher success probability.

Classical and quantum versions of Bell’s game. If Alice and Bob share entangled qubits rather than classical bits, then they can win the game with a higher success probability.

There is also a quantum version of the game, in which the rules are the same except that Alice and Bob are now permitted to use entangled quantum bits (“qubits”)  which were distributed before the game began. By exploiting their shared entanglement, they can play a better quantum strategy and win the game with a higher success probability, better than 85%. Thus quantum entanglement is a useful resource, enabling Alice and Bob to play the game better than if they shared only classical correlations instead of quantum correlations.

And experimental physicists have been playing the game for decades, winning with a success probability that violates Bell’s inequality. The experiments indicate that quantum correlations really are fundamentally different than, and stronger than, classical correlations.

Why is that such a big deal? Bell showed that a quantum system is more than just a probabilistic classical system, which eventually led to the realization (now widely believed though still not rigorously proven) that accurately predicting the behavior of highly entangled quantum systems is beyond the capacity of ordinary digital computers. Therefore physicists are now striving to scale up the weirdness of the microscopic world to larger and larger scales, eagerly seeking new phenomena and unprecedented technological capabilities.

1964 was a good year. Higgs and others described the Higgs mechanism, Gell-Mann and Zweig proposed the quark model, Penzias and Wilson discovered the cosmic microwave background, and I saw the Beatles on the Ed Sullivan show. Those developments continue to reverberate 50 years later. We’re still looking for evidence of new particle physics beyond the standard model, we’re still trying to unravel the large scale structure of the universe, and I still like listening to the Beatles.

Bell’s legacy is that quantum entanglement is becoming an increasingly pervasive theme of contemporary physics, important not just as the source of a quantum computer’s awesome power, but also as a crucial feature of exotic quantum phases of matter, and even as a vital element of the quantum structure of spacetime itself. 21st century physics will advance not only by probing the short-distance frontier of particle physics and the long-distance frontier of cosmology, but also by exploring the entanglement frontier, by elucidating and exploiting the properties of increasingly complex quantum states.

frontiersSometimes I wonder how the history of physics might have been different if there had been no John Bell. Without Higgs, Brout and Englert and others would have elucidated the spontaneous breakdown of gauge symmetry in 1964. Without Gell-Mann, Zweig could have formulated the quark model. Without Penzias and Wilson, Dicke and collaborators would have discovered the primordial black-body radiation at around the same time.

But it’s not obvious which contemporary of Bell, if any, would have discovered his inequality in Bell’s absence. Not so many good physicists were thinking about quantum entanglement and hidden variables at the time (though David Bohm may have been one notable exception, and his work deeply influenced Bell.) Without Bell, the broader significance of quantum entanglement would have unfolded quite differently and perhaps not until much later. We really owe Bell a great debt.

*I’m stealing the title and opening sentence of this post from Sidney Coleman’s great 1981 lectures on “The magnetic monopole 50 years later.” (I’ve waited a long time for the right opportunity.)

**I’m abusing history somewhat. Bell did not use the language of games, and this particular version of the inequality, which has since been extensively tested in experiments, was derived by Clauser, Horne, Shimony, and Holt in 1969.

I spy with my little eye…something algebraic.

Look at this picture.

Peter 1

Does any part of it surprise you? Look more closely.

Peter 2

Now? Try crossing your eyes.

Peter 3

Do you see a boy’s name?

I spell “Peter” with two e’s, but “Piotr” and “Pyotr” appear as authors’ names in papers’ headers. Finding “Petr” in a paper shouldn’t have startled me. But how often does “Gretchen” or “Amadeus” materialize in an equation?

When I was little, my reading list included Eye Spy, Where’s Waldo?, and Puzzle Castle. The books teach children to pay attention, notice details, and evaluate ambiguities.

That’s what physicists do. The first time I saw the picture above, I saw a variation on “Peter.” I was reading (when do I not?) about the intersection of quantum information and thermodynamics. The authors were discussing heat and algebra, not saints or boys who picked pecks of pickled peppers. So I looked more closely.

Each letter resolved into part of a story about a physical system. The P represents a projector. A projector is a mathematical object that narrows one’s focus to a particular space, as blinders on a horse do. The E tells us which space to focus on: a space associated with an amount E of energy, like a country associated with a GDP of $500 billion.

Some of the energy E belongs to a heat reservoir. We know so because “reservoir” begins with r, and R appears in the picture. A heat reservoir is a system, like a colossal bathtub, whose temperature remains constant. The Greek letter \tau, pronounced “tau,” represents the reservoir’s state. The reservoir occupies an equilibrium state: The bath’s large-scale properties—its average energy, volume, etc.—remain constant. Never mind about jacuzzis.

Piecing together the letters, we interpret the picture as follows: Imagine a vast, constant-temperature bathtub (R). Suppose we shut the tap long enough ago that the water in the tub has calmed (\tau). Suppose the tub neighbors a smaller system—say, a glass of Perrier.* Imagine measuring how much energy the bath-and-Perrier composite contains (P). Our measurement device reports the number E.

Quite a story to pack into five letters. Didn’t Peter deserve a second glance?

The equation’s right-hand side forms another story. I haven’t seen Peters on that side, nor Poseidons nor Gallahads. But look closely, and you will find a story.

 

The images above appear in “Fundamental limitations for quantum and nanoscale thermodynamics,” published by Michał Horodecki and Jonathan Oppenheim in Nature Communications in 2013.

 

*Experts: The ρS that appears in the first two images represents the smaller system. The tensor product represents the reservoir-and-smaller-system composite.

Generally speaking

My high-school calculus teacher had a mustache like a walrus’s and shoulders like a rower’s. At 8:05 AM, he would demand my class’s questions about our homework. Students would yawn, and someone’s hand would drift into the air.

“I have a general question,” the hand’s owner would begin.

“Only private questions from you,” my teacher would snap. “You’ll be a general someday, but you’re not a colonel, or even a captain, yet.”

Then his eyes would twinkle; his voice would soften; and, after the student asked the question, his answer would epitomize why I’ve chosen a life in which I use calculus more often than laundry detergent.

http://www.sell-buy-machines.com/2013/02/why-prefer-second-hand-equipment-over-new.html

Many times though I witnessed the “general” trap, I fell into it once. Little wonder: I relish generalization as other people relish hiking or painting or Michelin-worthy relish. When inferring general principles from examples, I abstract away details as though they’re tomato stains. My veneration of generalization led me to quantum information (QI) theory. One abstract theory can model many physical systems: electrons, superconductors, ion traps, etc.

Little wonder that generalizing a QI model swallowed my summer.

QI has shed light on statistical mechanics and thermodynamics, which describe energy, information, and efficiency. Models called resource theories describe small systems’ energies, information, and efficiencies. Resource theories help us calculate a quantum system’s value—what you can and can’t create from a quantum system—if you can manipulate systems in only certain ways.

Suppose you can perform only operations that preserve energy. According to the Second Law of Thermodynamics, systems evolve toward equilibrium. Equilibrium amounts roughly to stasis: Averages of properties like energy remain constant.

Out-of-equilibrium systems have value because you can suck energy from them to power laundry machines. How much energy can you draw, on average, from a system in a constant-temperature environment? Technically: How much “work” can you draw? We denote this average work by < W >. According to thermodynamics, < W > equals the change ∆F in the system’s Helmholtz free energy. The Helmholtz free energy is a thermodynamic property similar to the energy stored in a coiled spring.

http://www.telegraph.co.uk/property/propertyadvice/jeffhowell/8013593/Home-improvements-Slime-does-come-out-in-the-wash.html

One reason to study thermodynamics?

Suppose you want to calculate more than the average extractable work. How much work will you probably extract during some particular trial? Though statistical physics offers no answer, resource theories do. One answer derived from resource theories resembles ∆F mathematically but involves one-shot information theory, which I’ve discussed elsewhere.

If you average this one-shot extractable work, you recover < W > = ∆F. “Helmholtz” resource theories recapitulate statistical-physics results while offering new insights about single trials.

Helmholtz resource theories sit atop a silver-tasseled pillow in my heart. Why not, I thought, spread the joy to the rest of statistical physics? Why not generalize thermodynamic resource theories?

The average work <W > extractable equals ∆F if heat can leak into your system. If heat and particles can leak, <W > equals the change in your system’s grand potential. The grand potential, like the Helmholtz free energy, is a free energy that resembles the energy in a coiled spring. The grand potential characterizes Bose-Einstein condensates, low-energy quantum systems that may have applications to metrology and quantum computation. If your system responds to a magnetic field, or has mass and occupies a gravitational field, or has other properties, <W > equals the change in another free energy.

A collaborator and I designed resource theories that describe heat-and-particle exchanges. In our paper “Beyond heat baths: Generalized resource theories for small-scale thermodynamics,” we propose that different thermodynamic resource theories correspond to different interactions, environments, and free energies. I detailed the proposal in “Beyond heat baths II: Framework for generalized thermodynamic resource theories.”

“II” generalizes enough to satisfy my craving for patterns and universals. “II” generalizes enough to merit a hand-slap of a pun from my calculus teacher. We can test abstract theories only by applying them to specific systems. If thermodynamic resource theories describe situations as diverse as heat-and-particle exchanges, magnetic fields, and polymers, some specific system should shed light on resource theories’ accuracy.

If you find such a system, let me know. Much as generalization pleases aesthetically, the detergent is in the details.

Making sci-fi teleportation sound less crazy

laser_refraction

Laser beam bending due to a change in the speed of light in water.

If you ever wanted to see a sci-fi plot that expertly applied advanced physical concepts so that with a bit of imagination teleporting a human was not as unbelievable as most of the teleportation scenarios we see in the movies, keep reading.

Years ago, when I was still in Russia, I was working on a back-story for a sci-fi game I was playing with friends. In the game, players were given stones (from Mars!) that could change the fundamental constants of nature: electron charge e, speed of light c and Planck constant h. I had already worked out the effects these stones would produce on the space around them (I suggest it as an exercise to the nerdy reader – once you are done thinking about it, see my answer below), so my next task was to envision a big scientific project centered around those stones, with a solid foundation on real physics and a portal to Mars as a final goal. As it turned out, some unforeseen consequences included blowing up the whole lab and scattering the stones in the nearby forest. That’s the back-story.

It all worked beautifully on paper. I imagined that materials could be programmed to obey different values of fundamental constants. These Martian stones were supposed to be the first encounter humanity had with matter where such effects could be observed and studied. The effects extended to a region around the stone, with weird things happening on the boundary of that region. For one thing, energy was not conserved in the vicinity of these stones.

Now having control over e, c and h, the scientists would leverage this new-found power to try to move the fine structure constant e^2/(\hbar c) to what is known as the Landau pole. Such a feat would result in infinitely strong interactions between particles, so that the energetic content of space-time would jump through the roof and a black hole would form. If one was lucky, even a traversable wormhole would form, which is what the scientists were hoping for, because back on Mars these things could have formed naturally, and the lab wormhole would connect to the Martian network.

If you’ve read all this and are asking yourself “What just happened?”, see all the physical concepts explained below: Continue reading

Where are you, Dr. Frank Baxter?

This year marks the 50th anniversary of my first publication. In 1964, when we were eleven-year-old fifth graders, my best friend Mace Rosenstein and I launched The Pres-stein Gazette, a not-for-profit monthly. Though the first issue sold well, the second issue never appeared.

Front page of the inaugural issue of the Pres-stein Gazette

Front page of the inaugural issue of the Pres-stein Gazette. Faded but still legible, it was produced using a mimeograph machine, a low-cost printing press which was popular in the pre-Xerox era.

One of my contributions to the inaugural  issue was a feature article on solar energy, which concluded that fossil fuel “isn’t of such terrific abundance and it cannot support the world for very long. We must come up with some other source of energy. Solar energy is that source …  when developed solar energy will be a cheap powerful “fuel” serving the entire world generously forever.”

This statement holds up reasonably well 50 years later. You might wonder how an eleven-year-old in 1964 would know something like that. I can explain …

In the 1950s and early 1960s, AT&T and the Bell Telephone System produced nine films about science, which were broadcast on prime-time network television and attracted a substantial audience. After broadcast, the films were distributed to schools as 16 mm prints and frequently shown to students for many years afterward. I don’t remember seeing any of the films on TV, but I eventually saw all nine in school. It was always a treat to watch one of the “Bell Telephone Movies” instead of hearing another boring lecture.

For educational films, the production values were uncommonly high. Remarkably, the first four were all written and directed by the legendary Frank Capra (a Caltech alum), in consultation with a scientific advisory board provided by Bell Labs.  Those four (Our Mr. Sun, Hemo the Magnificent, The Strange Case of the Cosmic Rays, and Unchained Goddess, originally broadcast in 1956-58) are the ones I remember most vividly. DVDs of these films exist, but I have not watched any of them since I was a kid.

The star of the first eight films was Dr. Frank Baxter, who played Dr. Research, the science expert. Baxter was actually an English professor at USC who had previous television experience as the popular host of a show about Shakespeare, but he made a convincing and pleasingly avuncular scientist. (The ninth film, Restless Sea, was produced by Disney, and Walt Disney himself served as host.) The other lead role was Mr. Writer, a skeptical and likeable Everyman who learned from Dr. Research’s clear explanations and sometimes translated them into vernacular.

The first film, Our Mr. Sun, debuted in 1956 (broadcast in color, a rarity at that time) and was seen by 24 million prime-time viewers. Mr. Writer was Eddie Albert, a well-known screen actor who later achieved greater fame as the lead on the 1960s TV situation comedy Green Acres. Lionel Barrymore appeared in a supporting role.

Dr. Frank Baxter and Eddie Albert in Our Mr. Sun.

Dr. Frank Baxter and Eddie Albert in Our Mr. Sun. (Source: Wikipedia)

Our Mr. Sun must have been the primary (unacknowledged) source for my article in the Pres-stein Gazette.  Though I learned from Wikipedia that Capra insisted (to the chagrin of some of his scientific advisers) on injecting some religious themes into the film, I don’t remember that aspect at all. The scientific content was remarkably sophisticated for a film that could be readily enjoyed by elementary school students, and I remember (or think I do) clever animations teaching me about the carbon cycle in stellar nuclear furnaces and photosynthesis as the ultimate source of all food sustaining life on earth. But I was especially struck by Dr. Baxter’s dire warning that, as the earth’s population grows, our planet will face shortages of food and fuel. On a more upbeat note he suggested that advanced technologies for harnessing the power of the sun would be the key to our survival, which inspired the optimistic conclusion of my article.

A lavishly produced prime-time show about science was a real novelty in 1956, many years before NOVA or the Discovery Channel. I wonder how many readers remember seeing the Dr. Frank Baxter movies when you were kids, either on TV or in school. Or was there another show that inspired you like Our Mr. Sun inspired me? I hope some of you will describe your experiences in the comments.

And I also wonder what resource could have a comparable impact on an eleven-year-old in today’s very different media environment. The obvious comparison is with Neil deGrasse Tyson’s revival of Cosmos, which aired on Fox in 2014. The premiere episode of Cosmos drew 8.5 million viewers on the night it was broadcast, but that is a poor measure of impact nowadays. Each episode has been rebroadcast many times, not just in the US and Canada but internationally as well, and the whole series is now available in DVD and Blu-ray. Will lots of kids in the coming years own it and watch it? Is Cosmos likely to be shown in classrooms as well?

Science is accessible to the curious through many other avenues today, particularly on YouTube. One can watch TED talks, or Minute Physics, or Veritasium, or Khan Academy, or Lenny Susskind’s lectures, not to mention our own IQIM videos on PHD Comics. And there are many other options. Maybe too many?

But do kids watch this stuff? If not, what online sources inspire them? Do they get as excited as I did when I watched Dr. Frank Baxter at age 11?

I don’t know. What do you think?

Macroscopic quantum teleportation: the story of my chair

In the summer of 2000, a miracle occurred: The National Science Foundation decided to fund a new Institute for Quantum Information at Caltech with a 5 million dollar award from their Information Technology Research program. I was to be the founding director of the IQI.

Jeff Kimble explained to me why we should propose establishing the IQI. He knew I had used my slice of our shared DARPA grant to bring Alexei Kitaev to Caltech as a visiting professor, which had been wonderful. Recalling how much we had both benefited from Kitaev’s visit, Jeff remarked emphatically that “This stuff’s not free.” He had a point. To have more fun we’d need more money. Jeff took the lead in recruiting a large team of Caltech theorists and experimentalists to join the proposal we submitted, but the NSF was primarily interested in supporting the theory of quantum computation rather than the experimental part of the proposal. That was how I wound up in charge, though I continued to rely on Jeff’s advice and support.

This was a new experience for me and I worried a lot about how directing an institute would change my life. But I had one worry above all: space. We envisioned a thriving institute brimming over with talented and enthusiastic young scientists and visitors drawn from the physics, computer science, and engineering communities. But how could we carve out a place on the Caltech campus where they could work and interact?

To my surprise and delight, Jeff and I soon discovered that someone else at Caltech shared our excitement over the potential of IQI — Richard Murray, who was then the Chair of Caltech’s Division of Engineering and Applied Science. Richard arranged for the IQI to occupy office space in Steele Laboratory and some space we could configure as we pleased in Jorgensen Laboratory. The hub of the IQI became the lounge in Jorgensen, which we used for our seminar receptions, group meetings, and innumerable informal discussions, until our move to the beautiful Annenberg Center when it opened in 2009.

I sketched a rough plan for the Jorgensen layout, including furniture for the lounge. The furniture, I was told, was “NIC”. Though I was too embarrassed to ask, I eventually inferred this meant “Not in Contract” — I would need to go furniture shopping, one of my many burgeoning responsibilities as Director.

By this time, Ann Harvey was in place as IQI administrator, a huge relief. But furniture was something I thought I knew about, because I had designed and furnished a common area for the particle theory group a couple of years earlier. As we had done on that previous occasion, my wife Roberta and I went to Krause’s Sofa Factory to order a custom-made couch, love seat, and lounge chair, in a grayish green leather which we thought would blend well with the carpeting.

Directing an institute is not as simple as it sounds, though. Before the furniture was delivered, Krause’s declared bankruptcy! We had paid in full, but I had some anxious moments wondering whether there would be a place to sit down in the IQI lounge. In the end, after some delay, our furniture was delivered in time for the grand opening of the new space in September 2001. A happy ending, but not really the end of the story.

Before the move to Annenberg in 2009, I ordered furniture to fill our (much smaller) studio space, which became the new IQI common area. The Jorgensen furniture was retired, and everything was new! It was nice … But every once in a while I felt a twinge of sadness. I missed my old leather chair, from which I had pontificated at eight years worth of group meetings. That chair and I had been through a lot together, and I couldn’t help but feel that my chair’s career had been cut short before its time.

I don’t recall mentioning these feelings to anyone, but someone must have sensed my regrets. Because one day not long after the move another miracle occurred … my chair was baaack! Sitting in it again felt … good. For five years now I’ve been pontificating from my old chair in our new studio, just like I used to. No one told me how my chair had been returned to me, and I knew better than to ask.

My chair today. Like me, a bit worn but still far from retirement.

My chair today. Like me, a bit worn but still far from retirement.

Eventually the truth comes out. At my 60th birthday celebration last year, Stephanie Wehner and Darrick Chang admitted to being the perpetrators, and revealed the whole amazing story in their article on “Macroscopic Quantum Teleportation” in a special issue of Nature Relocations. Their breakthrough article was enhanced by Stephanie’s extraordinary artwork, which you really have to see to believe. So if your curiosity is piqued, please follow this link to find out more.

Me and my chair at our original location in 156 Jorgensen (2009 photo).

Me and my chair at our original location in 156 Jorgensen (2009 photo).

Why, you may wonder, am I reminiscing today about the story of my chair? Well, is an excuse really necessary? But if you must know, it may be because, after two renewals and 14 years of operation, I submitted the IQI Final Report to the NSF this week. Don’t worry — the Report is not really Final, because the IQI has become part of an even grander vision, the IQIM (which has given birth to this blog among other good things). Like my chair, the IQI is not quite what it was, yet it lives on.

The nostalgic feelings aroused by filing the Final Report led me to reread the wonderful volume my colleagues put together for my birthday celebration, which recounts not only the unforgettable exploits of Stephanie and Darrick, but many other stories and testimonials that deeply touched me.

Browsing through that book today, one thing that struck me is the ways we sometimes have impact on others without even being aware of it. For example, Aram Harrow, Debbie Leung, Joe Renes and Stephanie all remember lectures I gave when they were undergraduate students (before I knew them), which might have influenced their later research careers. Knowing this will make it a little harder to say no the next time I’m invited to give a talk. Yaoyun Shi has vivid memories of the time I wore my gorilla mask to the IQI seminar on Halloween, which inspired him to dress up as “a butcher threatening to cut off the ears of my students with a bloody machete if they were not listening,” thus boosting his teaching evaluations. And Alexios Polychronakos, upon hearing that I had left particle theory to pursue quantum computing, felt it “was a bit like watching your father move to Las Vegas and marry a young dancer after you leave for college,” while at the same time he appreciated “that such reinventions are within the spectrum of possibilities for physicists who still have a pulse.”

I’m proud of what the IQI(M) has accomplished, but we’re just getting started. After 14 years, I still have a pulse, and my chair has plenty of wear left. Together we look forward to many more years of pontification.

How Physics for Poets can boost your Physics GRE score

As summer fades to autumn, prospective grad students are eyeing applications. Professors are suggesting courses, and seniors are preparing for Graduate Record Exams (GREs). American physics programs  (and a few programs abroad) require or encourage applicants to take the Physics GRE. If you’ve sighted physics grad school in your crosshairs, consider adding Physics for Poets (PFP) to your course list. Many colleges develop this light-on-the-math tour of physics history for non-majors. But Physics for Poets can boost your Physics GRE score while reinforcing the knowledge gained from your physics major.

My senior spring in college, PFP manifested as “PHYS 001/002: Understanding the Universe: From Atoms to the Big Bang.” The tallness of this order failed to daunt Marcelo Gleiser, a cosmologist whose lectures swayed with a rhythm like a Foucault pendulum. From creation myths and Greek philosophers, we proceeded via Copernicus and Kepler to Newton and the Enlightenment, Maxwell and electromagnetism, the Industrial Revolution and thermodynamics, Einstein’s relativity, and WWII and the first quantum revolution, ending with particle physics and cosmology. The course provided a history credit I needed. It offered a breather from problem sets, sandwiching my biophysics and quantum-computation lectures. Pragmatism aside, PHYS 2 showcased the grandness of the physicist’s legacy—of my legacy. PHYS 2 sharpened my determination to do that legacy justice. To do it justice, most of us must pass tests. Here’s how PFP can help.

http://ask.dartmouth.edu/categories/misc/55.html

(1) A Foucault pendulum, invented during the 19th century to demonstrate that the Earth rotates. (2) An excuse to review noninertial reference frames.

Reviewing basic physics can improve GRE scores. If thermodynamics has faded from memory, good luck calculating a Carnot engine’s efficiency. Several guides (and I) recommend reviewing notes and textbooks, working practice problems, simulating exams, and discussing material with peers.

Taking PFP, you will review for the GRE. A list of the topics on the Physics GRE appears here. Of the 14 mechanics topics, eight surfaced in PHYS 2. Taking PFP will force you to review GRE topics that lack of time (or that procrastination) might force you to skip. Earning credit for GRE prep, you won’t have to shoehorn that prep into your schedule at the expense of research. The Physics GRE covers basic physics developed during the past 500 years; so do many PFP courses.

The GRE, you might protest, involves more math than PFP. But GRE questions probe less deeply, and PFP can galvanize more reviews of math, than you might expect. According to Stanford’s Society of Physics Students, “Each [Physics GRE] question shouldn’t require much more than a minute’s worth of thought and computation.” Expect to use the Wave Equation and Maxwell’s Equations, not to derive the former from the latter. Some PFP instructors require students to memorize formulae needed on the GRE. PFP can verify whether your memory has interchanged the exponents in Kepler’s Third Law, or dropped the negative sign from the kinetic-energy term in Schrödinger’s Equation.

Even formulae excluded from PFP exams appear in PFP classes. In a PHYS 2 Powerpoint, Marcelo included Planck’s blackbody formula. Though he never asked me to regurgitate it, his review benefited me. Given such a Powerpoint, you can re-memorize the formula. Derive the Stefan-Boltzmann and Wien Displacement Laws. Do you remember how a blackbody’s energy density varies with frequency in the low-energy limit? PFP can catalyze your review of math used on the GRE.

xkcd - Science

Physics for Poets: It can work for applicants to physics grad programs.

While recapitulating basic physics, PFP can introduce “specialized” GRE topics. Examples include particle physics, astrophysics, and nuclear physics. Covered in advanced classes, these subjects might have evaded mention in your courses. Signing up for biophysics, I had to drop particle theory. PHYS 2 helped compensate for the drop. I learned enough about neutrinos and quarks to answer GRE questions about them. In addition to improving your score, surveying advanced topics in PFP can enhance your understanding of physics seminars and conversations. The tour can help you identify which research you should undertake. If you’ve tried condensed-matter and atmospheric research without finding your niche, tasting cosmology in PFP might point toward your next project. Sampling advanced topics in PFP, you can not only prepare for the GRE, but also enrich your research.

I am not encouraging you to replace advanced physics courses with PFP. I encourage you to complement advanced courses with PFP. If particle physics suits your schedule and intrigues you, enjoy. If you need to fulfill a history or social-sciences distribution requirement, check whether PFP can count. Consider PFP if you’ve committed to a thesis and three problem-set courses, you haven’t signed up for the minimum number of courses required by your college, and more problem sets would strangle you. Sleep deprivation improves neither exam scores nor understanding. Not that I sailed through PHYS 2 without working. I worked my rear off—fortunately for my science. Switching mindsets—pausing frustrating calculations to study Kepler—can refresh us. Stretch your calculational toolkit in advanced courses, and reinforce that toolkit with PFP.

In addition to reviewing basic physics and surveying specialized topics, you can seek study help from experts in PFP. When your questions about GRE topics overlap with PFP material, ask your instructor and TA. They’ll probably enjoy answering: Imagine teaching physics with little math, with one hand tied behind your back. Some students take your class not because they want to, but because they need science credits. Wouldn’t you enjoy directing a student who cares? While seeking answers, you can get to know your professor or TA. You can learn about his or her research. Maybe PFP will lead you to join that research. PFP not only may connect you to experts able to answer questions as no study guide can. PFP offers opportunities to enhance a course as few non-physics students can and to develop relationships with role models.

Science class

Instructors’ expertise has benefited science students throughout much of history.

Those relationships illustrate the benefits that PFP extends beyond GREs. As mentioned earlier, surveying advanced topics can diversify the research conversations you understand. The survey can direct you toward research you’ll pursue. Further exposure to research can follow from discussions with instructors. Intermissions from problem sets can promote efficiency. Other benefits of PFP include enhancement of explanatory skills and a bird’s-eye view of the scientific process to which you’re pledging several years. What a privilege we enjoy, PFP shows. We physicists explore questions asked for millennia. We wear mantles donned by Faraday, Bernoulli, and Pauli. When integrals pour out our ears and experiments break down, PFP can remind us why we bother. And that we’re in fine company.

Physics for Poets can improve your Physics GRE score and reinforce your physics major. Surveying basic physics, PFP will force you to review GRE topics. PFP may introduce specialized GRE topics absent from most physics majors. Opportunities abound to re-memorize equations and to complement lectures with math. Questioning instructors, you can deepen your understanding as with no study guide. Beyond boosting your GRE score, PFP can broaden your research repertoire, energize your calculations, improve your explanatory skills, and inspire.

Good luck with the academic year, and see you in grad school!