Individual quantum systems

When I went to school in the 20th century, “quantum measurements” in the laboratory were typically performed on ensembles of similarly prepared systems. In the 21st century, it is becoming increasingly routine to perform quantum measurements on single atoms, photons, electrons, or phonons. The 2012 Nobel Prize in Physics recognizes two of the heros who led these revolutionary advances, Serge Haroche and Dave Wineland. Good summaries of their outstanding achievements can be found at the Nobel Prize site, and at Physics Today.

Serge Haroche developed cavity quantum electrodynamics in the microwave regime. Among other impressive accomplishments, his group has performed “nondemolition” measurements of the number of photons stored in a cavity (that is, the photons can be counted without any of the photons being absorbed). The measurement is done by preparing a Rubidium atom in a superposition of two quantum states. As the Rb atom traverses the cavity, the energy splitting of these two states is slightly perturbed by the cavity’s quantized electromagnetic field, resulting in a detectable phase shift that depends on the number of photons present. (Caltech’s Jeff Kimble, the Director of IQIM, has pioneered the development of analogous capabilities for optical photons.)
Continue reading

No calculators allowed

During Friday evenings at Caltech, the Institute for Quantum Information and Matter runs a seminar series focusing on research talks geared towards a diverse audience whose common background is quantum mechanics (just that, nothing else…) But, the fun doesn’t end after the 45 minute talks are over. The seminar is followed by a mingling session on the brand new patio of East Bridge, the building where Richard Feynman delivered his famous lectures.

Grigori Perelman. Not a Russian middle-schooler anymore, but still pretty smart.

Last Friday, Aleksander Kubica (pronounced Koobitsa), a Polish graduate student in the Theory group of IQIM and a first prize winner of the 2009 European Union Contest for Young Scientists, decided to test our ingenuity by giving us a problem that Russian middle-schoolers are expected to solve. If you haven’t met any Russian middle-schoolers, well, let’s just say that you should think carefully before accepting a challenge that is geared towards their level of mathematical maturity. What was the challenge?

Problem 1: Show that: \frac{1}{2}\cdot \frac{3}{4}\cdot \frac{5}{6}\cdot \frac{7}{8}\cdot \frac{9}{10}\cdots \frac{99}{100} < \frac{1}{10}.
Continue reading

Redemption: Part II

Last week, a journey began to find the solution to a problem I could not solve as a seventeen year-old boy. That problem became an obsession of mine during the last days of the International Math Olympiad of 1997, the days when I also met the first girl I ever kissed. At the time, I did not have the heart to tell the girl that I had traveled across the Atlantic to compete with the best and brightest and had come up short. I told her that I had solved the problem, but that the page with my answer had been lost. I told my parents the same thing and to everyone at school who would ask me why I did not return with a medal from the Math Olympics. The lie became so powerful that I did not look at that problem again until now. So, you may be wondering why a blog about Quantum Information Science at Caltech includes posts on problems from Math Olympiads. And why I would open the book on the page with that one problem after fifteen years… Continue reading

Redemption: Part I

Back in my last post, I closed with a problem (The Redeemer) from the International Math Olympiad of 1997. Unlike the problem I posted from 1981 (Elementary, my dear Watson), I was actually walking by the time I met The Redeemer. In fact, I was in Mar del Plata, a beautiful seaside beach resort in Argentina, participating in the 38th International Math Olympiad. The Redeemer was Problem 5. I remember clearly the moment I saw it. It looked so simple, so innocent: Find all pairs of positive integers a,b \ge 1, such that a^{(b^2)} = b^a.

I had to solve it. But little did I know…

Continue reading

The allure of elegance

On one of my many short-lived attempts to study for the International Physics Olympiad, I picked up a copy of a well-known textbook by Halliday and Resnick. My high school didn’t offer a course in electricity and magnetism, so I figured I would have to teach myself about the topic if I wanted to solve problems competitively.

I only managed to solve about 3 problems from the book before a friend called me up asking if I wanted to play Frisbee. After that, I don’t think I ever looked at the text again, although for some reason I did bring it to college – maybe to make sure I had enough things gathering dust on my dorm room shelf. That’s not to say it’s a bad book! In fact, I learned quite a bit from the three problems I solved. Here’s one of them:

Continue reading

Three Questions: Zach Korth, LIGO

Who are you?

My name is Zach Korth. I’m a graduate student here at Caltech, working in Prof. Rana Adhikari’s group on experimental gravitational wave physics. The bulk of my time goes to developing and testing technology that will be installed at the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) in Livingston, LA, and Hanford, WA. Run jointly by Caltech and MIT, LIGO is poised to make the first ever direct detection of gravitational waves, ripples of space-time itself propagating across the universe at the speed of light, carrying with them information about the most distant and poorly understood astrophysical phenomena thought to exist.

At the LIGO Hanford control room.


Continue reading

How to build a teleportation machine: Teleportation protocol

Damn, it sure takes a long time for light to travel to the Pegasus galaxy. If only quantum teleportation enabled FTL Stargates…

I was hoping to post this earlier, but a heavy dose of writer’s block set in (I met a girl, and no, this blog didn’t help — but she is a physicist!) I also got lost in the rabbit hole that is quantum teleportation. My initial intention with this series of posts was simply to clarify common misconceptions and to introduce basic concepts in quantum information. However, while doing so, I started a whirlwind tour of deep questions in physics which become unavoidable as you think harder and deeper about quantum teleportation. I’ve only just begun this journey, but using quantum teleportation as a springboard has already led me to contemplate crazy things such as time-travel via coupling postselection with quantum teleportation and the subtleties of entanglement. In other words, quantum teleportation may not be the instantaneous Stargate style teleportation you had in mind, but it’s incredibly powerful in its own right. Personally, I think we’ve barely begun to understand the full extent of its ramifications.

Continue reading

A promise

During my recent trip back home, I had a chance to talk with friends and family over dinner about the future of Greece. I heard about tales of political corruption and wasted opportunities within Greece, but I noticed also a growing resentment towards the rest of the world, who was mocking us, at best, and was out to get us, at worst. After I had listened for a while to the older generation, I asked them this: “So, what do you plan to do about all this?” They looked at me and an old, wise-looking man said: “There is nothing to be done. If you try to change anything, they will find you and silence you. I tried to change things once…” At this point, the younger generation, some still in high-school, others in college, nodded approvingly. But one young man, a young composer planning to study at the famed Berklee College of Music, was looking at me intently. What was he thinking? Why wasn’t he nodding with the old man? I don’t know. But, it was then that I turned to the old man and said: “There are wise men who see the world as it is. And there are fools who see it as it can be.”
Continue reading

Elementary, my dear Watson

On last week’s “Welcome to the math olympics”, I closed with a problem from the International Math Olympiad of 1981 (a bad year for wine – I would know, I was an avid drinker back then). I would like to take some time to present a solution to this problem, because this is where all the magic happens. What magic? You will see. Here is the problem again:

Problem 6 (IMO 1981, modified): If f(0,y) = y+1, \, f(x+1,0) = f(x,1) and f(x+1,y+1) = f(x, f(x+1,y)), for all non-negative integers x,y, find f(4,2009).

The solution that follows uses solely elementary mathematics. What does that mean? It means that a 15 year-old can figure out the solution, given enough time and an IQ of 300. And, indeed, there are some who can solve this problem in 15 minutes. But, as you will see, it takes clarity of mind that is only attained through relentless effort. Effort to the outside world – to you, it will feel like you are going down the rabbit-hole and you don’t want the journey to end. But you must enter this world with wonder, because it is the world of the imagination – a world where your greatest weapon is your curiosity, prodding your mind to see how far the rabbit-hole goes.
Continue reading

Welcome to the math olympics

It was a beautiful day in the Winter of 1994. I had slept in because it was Saturday, but my older brother, Nikos, was not so lucky. He had just come back from a regional math competition named after the Greek philosopher Θαλής (Thales of Miletus) and he did not look happy. I asked him how he did, but he did not answer; he just reached into his backpack and took out the paper that contained the problems from the competition. Looking back, what I did next defines much of how I approach life since that day: I took the paper and started solving the problems one after the other until I was done. It took me three days – the competition lasted three hours.
Continue reading