Here’s one way to get out of a black hole!

Two weeks ago I attended an exciting workshop at Stanford, organized by the It from Qubit collaboration, which I covered enthusiastically on Twitter. Many of the talks at the workshop provided fodder for possible blog posts, but one in particular especially struck my fancy. In explaining how to recover information that has fallen into a black hole (under just the right conditions), Juan Maldacena offered a new perspective on a problem that has worried me for many years. I am eagerly awaiting Juan’s paper, with Douglas Stanford and Zhenbin Yang, which will provide more details.


My cell-phone photo of Juan Maldacena lecturing at Stanford, 22 March 2017.

Almost 10 years ago I visited the Perimeter Institute to attend a conference, and by chance was assigned an office shared with Patrick Hayden. Patrick was a professor at McGill at that time, but I knew him well from his years at Caltech as a Sherman Fairchild Prize Fellow, and deeply respected him. Our proximity that week ignited a collaboration which turned out to be one of the most satisfying of my career.

To my surprise, Patrick revealed he had been thinking about  black holes, a long-time passion of mine but not previously a research interest of his, and that he had already arrived at a startling insight which would be central to the paper we later wrote together. Patrick wondered what would happen if Alice possessed a black hole which happened to be highly entangled with a quantum computer held by Bob. He imagined Alice throwing a qubit into the black hole, after which Bob would collect the black hole’s Hawking radiation and feed it into his quantum computer for processing. Drawing on his knowledge about quantum communication through noisy channels, Patrick argued that  Bob would only need to grab a few qubits from the radiation in order to salvage Alice’s qubit successfully by doing an appropriate quantum computation.


Alice tosses a qubit into a black hole, which is entangled with Bob’s quantum computer. Bob grabs some Hawking radiation, then does a quantum computation to decode Alice’s qubit.

This idea got my adrenaline pumping, stirring a vigorous dialogue. Patrick had initially assumed that the subsystem of the black hole ejected in the Hawking radiation had been randomly chosen, but we eventually decided (based on a simple picture of the quantum computation performed by the black hole) that it should take a time scaling like M log M (where M is the black hole mass expressed in Planck units) for Alice’s qubit to get scrambled up with the rest of her black hole. Only after this scrambling time would her qubit leak out in the Hawking radiation. This time is actually shockingly short, about a millisecond for a solar mass black hole. The best previous estimate for how long it would take for Alice’s qubit to emerge (scaling like M3), had been about 1067 years.

This short time scale aroused memories of discussions with Lenny Susskind back in 1993, vividly recreated in Lenny’s engaging book The Black Hole War. Because of the black hole’s peculiar geometry, it seemed conceivable that Bob could distill a copy of Alice’s qubit from the Hawking radiation and then leap into the black hole, joining Alice, who could then toss her copy of the qubit to Bob. It disturbed me that Bob would then hold two perfect copies of Alice’s qubit; I was a quantum information novice at the time, but I knew enough to realize that making a perfect clone of a qubit would violate the rules of quantum mechanics. I proposed to Lenny a possible resolution of this “cloning puzzle”: If Bob has to wait outside the black hole for too long in order to distill Alice’s qubit, then when he finally jumps in it may be too late for Alice’s qubit to catch up to Bob inside the black hole before Bob is destroyed by the powerful gravitational forces inside. Revisiting that scenario, I realized that the scrambling time M log M, though short, was just barely long enough for the story to be self-consistent. It was gratifying that things seemed to fit together so nicely, as though a deep truth were being affirmed.


If Bob decodes the Hawking radiation and then jumps into the black hole, can he acquire two identical copies of Alice’s qubit?

Patrick and I viewed our paper as a welcome opportunity to draw the quantum information and quantum gravity communities closer together, and we wrote it with both audiences in mind. We had fun writing it, adding rhetorical flourishes which we hoped would draw in readers who might otherwise be put off by unfamiliar ideas and terminology.

In their recent work, Juan and his collaborators propose a different way to think about the problem. They stripped down our Hawking radiation decoding scenario to a model so simple that it can be analyzed quite explicitly, yielding a pleasing result. What had worried me so much was that there seemed to be two copies of the same qubit, one carried into the black hole by Alice and the other residing outside the black hole in the Hawking radiation. I was alarmed by the prospect of a rendezvous of the two copies. Maldacena et al. argue that my concern was based on a misconception. There is just one copy, either inside the black hole or outside, but not both. In effect, as Bob extracts his copy of the qubit on the outside, he destroys Alice’s copy on the inside!

To reach this conclusion, several ideas are invoked. First, we analyze the problem in the case where we understand quantum gravity best, the case of a negatively curved spacetime called anti-de Sitter space.  In effect, this trick allows us to trap a black hole inside a bottle, which is very advantageous because we can study the physics of the black hole by considering what happens on the walls of the bottle. Second, we envision Bob’s quantum computer as another black hole which is entangled with Alice’s black hole. When two black holes in anti-de Sitter space are entangled, the resulting geometry has a “wormhole” which connects together the interiors of the two black holes. Third, we chose the entangled pair of black holes to be in a very special quantum state, called the “thermofield double” state. This just means that the wormhole connecting the black holes is as short as possible. Fourth, to make the analysis even simpler, we suppose there is just one spatial dimension, which makes it easier to draw a picture of the spacetime. Now each wall of the bottle is just a point in space, with the left wall lying outside Bob’s side of the wormhole, and the right wall lying outside Alice’s side.

An important property of the wormhole is that it is not traversable. That is, when Alice throws her qubit into her black hole and it enters her end of the wormhole, the qubit cannot emerge from the other end. Instead it is stuck inside, unable to get out on either Alice’s side or Bob’s side. Most ways of manipulating the black holes from the outside would just make the wormhole longer and exacerbate the situation, but in a clever recent paper Ping Gao, Daniel Jafferis, and Aron Wall pointed out an exception. We can imagine a quantum wire connecting the left wall and right wall, which simulates a process in which Bob extracts a small amount of Hawking radiation from the right wall (that is, from Alice’s black hole), and carefully deposits it on the left wall (inserting it into Bob’s quantum computer). Gao, Jafferis, and Wall find that this procedure, by altering the trajectories of Alice’s and Bob’s walls, can actually make the wormhole traversable!


(a) A nontraversable wormhole. Alice’s qubit, thrown into the black hole, never reaches Bob. (b) Stealing some Hawking radiation from Alice’s side and inserting it on Bob’s side makes the wormhole traversable. Now Alice’s qubit reaches Bob, who can easily “decode” it.

This picture gives us a beautiful geometric interpretation of the decoding protocol that Patrick and I had described. It is the interaction between Alice’s wall and Bob’s wall that brings Alice’s qubit within Bob’s grasp. By allowing Alice’s qubit to reach Bob at the other end of the wormhole, that interaction suffices to perform Bob’s decoding task, which is especially easy in this case because Bob’s quantum computer was connected to Alice’s black hole by a short wormhole when she threw her qubit inside.


If, after a delay, Bob’s jumps into the black hole, he might find Alice’s qubit inside. But if he does, that qubit cannot be decoded by Bob’s quantum computer. Bob has no way to attain two copies of the qubit.

And what if Bob conducts his daring experiment, in which he decodes Alice’s qubit while still outside the black hole, and then jumps into the black hole to check whether the same qubit is also still inside? The above spacetime diagram contrasts two possible outcomes of Bob’s experiment. After entering the black hole, Alice might throw her qubit toward Bob so he can catch it inside the black hole. But if she does, then the qubit never reaches Bob’s quantum computer, and he won’t be able to decode it from the outside. On the other hand, Alice might allow her qubit to reach Bob’s quantum computer at the other end of the (now traversable) wormhole. But if she does, Bob won’t find the qubit when he enters the black hole. Either way, there is just one copy of the qubit, and no way to clone it. I shouldn’t have been so worried!

Granted, we have only described what happens in an oversimplified model of a black hole, but the lessons learned may be more broadly applicable. The case for broader applicability rests on a highly speculative idea, what Maldacena and Susskind called the ER=EPR conjecture, which I wrote about in this earlier blog post. One consequence of the conjecture is that a black hole highly entangled with a quantum computer is equivalent, after a transformation acting only on the computer, to two black holes connected by a short wormhole (though it might be difficult to actually execute that transformation). The insights of Gao-Jafferis-Wall and Maldacena-Stanford-Yang, together with the ER=EPR viewpoint, indicate that we don’t have to worry about the same quantum information being in two places at once. Quantum mechanics can survive the attack of the clones. Whew!

Thanks to Juan, Douglas, and Lenny for ongoing discussions and correspondence which have helped me to understand their ideas (including a lucid explanation from Douglas at our Caltech group meeting last Wednesday). This story is still unfolding and there will be more to say. These are exciting times!

Of magnetic monopoles and fast-scrambling black holes

Editor’s Note: On April 29th, 2014, the National Academy of Sciences announced the new electees to the prestigious organization. This was an especially happy occasion for everyone here at IQIM, since the new members included our very own John Preskill, Richard P. Feynman Professor of Theoretical Physics and regular blogger on this site. A request was sent to Leonard Susskind, a close friend and collaborator of John’s, to take a trip down memory lane and give the rest of us a glimpse of some of John’s early contributions to Physics. John, congratulations from all of us here at IQIM.

Preskill-John_7950_WebJohn Preskill was elected to the National Academy of Sciences, an event long overdue. Perhaps it took longer than it should have because there is no way to pigeon-hole him; he is a theoretical physicist, and that’s all there is to it.

John has long been one of my heroes in theoretical physics. There is something very special about his work. It has exceptional clarity, it has vision, it has integrity—you can count on it. And sometimes it has another property: it can surprise. The first time I heard his name come up, sometime around 1979, I was not only surprised; I was dismayed. A student whose name I had never heard of, had uncovered a serious clash between two things, both of which I deeply wanted to believe in. One was the Big-Bang theory and the other was the discovery of grand unified particle theories. Unification led to the extraordinary prediction that Dirac’s magnetic monopoles must exist, at least in principle. The Big-Bang theory said they must exist in fact. The extreme conditions at the beginning of the universe were exactly what was needed to create loads of monopoles; so many that they would flood the universe with too much mass. John, the unknown graduate student, did a masterful analysis. It left no doubt that something had to give. Cosmology gave. About a year later, inflationary cosmology was discovered by Guth who was in part motivated by Preskill’s monopole puzzle.

John’s subsequent career as a particle physicist was marked by a number of important insights which often had that surprising quality. The cosmology of the invisible axion was one. Others had to do with very subtle and counterintuitive features of quantum field theory, like the existence of “Alice strings”. In the very distant past, Roger Penrose and I had a peculiar conversation about possible generalizations of the Aharonov-Bohm effect. We speculated on all sorts of things that might happen when something is transported around a string. I think it was Roger who got excited about the possibilities that might result if a topological defect could change gender. Alice strings were not quite that exotic, only electric charge flips, but nevertheless it was very surprising.

John of course had a long standing interest in the quantum mechanics of black holes: I will quote a passage from a visionary 1992 review paper, “Do Black Holes Destroy Information?

“I conclude that the information loss paradox may well presage a revolution in fundamental physics.”

At that time no one knew the answer to the paradox, although a few of us, including John, thought the answer was that information could not be lost. But almost no one saw the future as clearly as John did. Our paths crossed in 1993 in a very exciting discussion about black holes and information. We were both thinking about the same thing, now called black hole complementarity. We were concerned about quantum cloning if information is carried by Hawking radiation. We thought we knew the answer: it takes too long to retrieve the information to then be able to jump into the black hole and discover the clone. This is probably true, but at that time we had no idea how close a call this might be.

It took until 2007 to properly formulate the problem. Patrick Hayden and John Preskill utterly surprised me, and probably everyone else who had been thinking about black holes, with their now-famous paper “Black Holes as Mirrors.” In a sense, this paper started a revolution in applying the powerful methods of quantum information theory to black holes.

We live in the age of entanglement. From quantum computing to condensed matter theory, to quantum gravity, entanglement is the new watchword. Preskill was in the vanguard of this revolution, but he was also the teacher who made the new concepts available to physicists like myself. We can now speak about entanglement, error correction, fault tolerance, tensor networks and more. The Preskill lectures were the indispensable source of knowledge and insight for us.

Congratulations John. And congratulations NAS.

-L. S.

Entanglement = Wormholes

One of the most enjoyable and inspiring physics papers I have read in recent years is this one by Mark Van Raamsdonk. Building on earlier observations by Maldacena and by Ryu and Takayanagi. Van Raamsdonk proposed that quantum entanglement is the fundamental ingredient underlying spacetime geometry.* Since my first encounter with this provocative paper, I have often mused that it might be a Good Thing for someone to take Van Raamsdonk’s idea really seriously.

Now someone has.

I love wormholes. (Who doesn’t?) Picture two balls, one here on earth, the other in the Andromeda galaxy. It’s a long trip from one ball to the other on the background space, but there’s a shortcut:You can walk into the ball on earth and moments later walk out of the ball in Andromeda. That’s a wormhole.

I’ve mentioned before that John Wheeler was one of my heros during my formative years. Back in the 1950s, Wheeler held a passionate belief that “everything is geometry,” and one particularly intriguing idea he called “charge without charge.” There are no pointlike electric charges, Wheeler proclaimed; rather, electric field lines can thread the mouth of a wormhole. What looks to you like an electron is actually a tiny wormhole mouth. If you were small enough, you could dive inside the electron and emerge from a positron far away. In my undergraduate daydreams, I wished this idea could be true.

But later I found out more about wormholes, and learned about “topological censorship.” It turns out that if energy is nonnegative, Einstein’s gravitational field equations prevent you from traversing a wormhole — the throat always pinches off (or becomes infinitely long) before you get to the other side. It has sometimes been suggested that quantum effects might help to hold the throat open (which sounds like a good idea for a movie), but today we’ll assume that wormholes are never traversable no matter what you do.

Alice and Bob are in different galaxies, but each lives near a black hole, and their black holes are connected by a wormhole.

Love in a wormhole throat: Alice and Bob are in different galaxies, but each lives near a black hole, and their black holes are connected by a wormhole. If both jump into their black holes, they can enjoy each other’s company for a while before meeting a tragic end.

Are wormholes any fun if we can never traverse them? The answer might be yes if two black holes are connected by a wormhole. Then Alice on earth and Bob in Andromeda can get together quickly if each jumps into a nearby black hole. For solar mass black holes Alice and Bob will have only 10 microseconds to get acquainted before meeting their doom at the singularity. But if the black holes are big enough, Alice and Bob might have a fulfilling relationship before their tragic end.

This observation is exploited in a recent paper by Juan Maldacena and Lenny Susskind (MS) in which they reconsider the AMPS puzzle (named for Almheiri, Marolf, Polchinski, and Sully). I wrote about this puzzle before, so I won’t go through the whole story again. Here’s the short version: while classical correlations can easily be shared by many parties, quantum correlations are harder to share. If Bob is highly entangled with Alice, that limits his ability to entangle with Carrie, and if he entangles with Carrie instead he can’t entangle with Alice. Hence we say that entanglement is “monogamous.” Now, if, as most of us are inclined to believe, information is “scrambled” but not destroyed by an evaporating black hole, then the radiation emitted by an old black hole today should be highly entangled with radiation emitted a long time ago. And if, as most of us are inclined to believe, nothing unusual happens (at least not right away) to an observer who crosses the event horizon of a black hole, then the radiation emitted today should be highly entangled with stuff that is still inside the black hole. But we can’t have it both ways without violating the monogamy of entanglement!

The AMPS puzzle invites audacious reponses, and AMPS were suitably audacious. They proposed that an old black hole has no interior — a freely falling observer meets her doom right at the horizon rather than at a singularity deep inside.

MS are also audacious, but in a different way. They helpfully summarize their key point succinctly in a simple equation:


Here, EPR means Einstein-Podolsky-Rosen, whose famous paper highlighted the weirdness of quantum correlations, while ER means Einstein-Rosen (sorry, Podolsky), who discovered wormhole solutions to the Einstein equations. (Both papers were published in 1935.) MS (taking Van Raamsdonk very seriously) propose that whenever any two quantum subsystems are entangled they are connected by a wormhole. In many cases, these wormholes are highly quantum mechanical, but in some cases (where the quantum system under consideration has a weakly coupled “gravitational dual”), the wormhole can have a smooth geometry like the one ER described. That wormholes are not traversable is important for the consistency of ER = EPR: just as Alice cannot use their shared entanglement to send a message to Bob instantaneously, so she is unable to send Bob a message through their shared wormhole.

AMPS imagined that Alice could distill qubit C from the black hole’s early radiation and carry it back to the black hole, successfully verifying its entanglement with another qubit B distilled from the recent radiation. Monogamy then ensures that qubit B cannot be entangled with qubit A behind the horizon. Hence when Alice falls through the horizon she will not observe the quiescent vacuum state in which A and B are entangled; instead she encounters a high-energy particle. MS agree with this conclusion.

AMPS go on to say that Alice’s actions before entering the black hole could not have created that energetic particle; it must have been there all along, one of many such particles constituting a seething firewall.

Here MS disagree. They argue that the excitation encountered by Alice as she crosses the horizon was actually created by Alice herself when she interacted with qubit C. How could Alice’s actions, executed far, far away from the black hole, dramatically affect the state of the black hole’s interior? Because C and A are connected by a wormhole!

The ER = EPR conjecture seems to allow us to view the early radiation with which the black hole is entangled as a complementary description of the black hole interior. It’s not clear yet whether this picture works in detail, and even if it does there could still be firewalls; maybe in some sense the early radiation is connected to the black hole via a wormhole, yet this wormhole is wildly fluctuating rather than a smooth geometry. Still, MS provide a promising new perspective on a deep problem.

As physicists we often rely on our sense of smell in judging scientific ideas, and earlier proposed resolutions of the AMPS puzzle (like firewalls) did not smell right. At first whiff, ER = EPR may smell fresh and sweet, but it will have to ripen on the shelf for a while. If this idea is on the right track, there should be much more to say about it. For now, wormhole lovers can relish the possibilities.

Eventually, Wheeler discarded “everything is geometry” in favor of an ostensibly deeper idea: “everything is information.” It would be a fitting vindication of Wheeler’s vision if everything in the universe, including wormholes, is made of quantum correlations.

*Update: Commenter JM reminded me to mention Brian Swingle’s beautiful 2009 paper, which preceded Van Raamsdonk’s and proposed a far-reaching connection between quantum entanglement and spacetime geometry.