Taming wave functions with neural networks

Note from Nicole Yunger Halpern: One sunny Saturday this spring, I heard Sam Greydanus present about his undergraduate thesis. Sam was about to graduate from Dartmouth with a major in physics. He had worked with quantum-computation theorist Professor James Whitfield. The presentation — about applying neural networks to quantum computation — so intrigued me that I asked him to share his research on Quantum Frontiers. Sam generously agreed; this is his story.

Wave functions in the wild


The wave function, \psi , is a mixed blessing. At first, it causes unsuspecting undergrads (me) some angst via the Schrodinger’s cat paradox. This angst morphs into full-fledged panic when they encounter concepts such as nonlocality and Bell’s theorem (which, by the way, is surprisingly hard to verify experimentally). The real trouble with \psi , though, is that it grows exponentially with the number of entangled particles in a system. We couldn’t even hope to write the wavefunction of 100 entangled particles, much less perform computations on it…but there’s a lot to gain from doing just that.

The thing is, we (a couple of luckless physicists) love \psi . Manipulating wave functions can give us ultra-precise timekeeping, secure encryption, and polynomial-time factoring of integers (read: break RSA). Harnessing quantum effects can also produce better machine learning, better physics simulations, and even quantum teleportation.

Taming the beast

Though \psi grows exponentially with the number of particles in a system, most physical wave functions can be described with a lot less information. Two algorithms for doing this are the Density Matrix Renormalization Group (DMRG) and Quantum Monte Carlo (QMC).


Density Matrix Renormalization Group (DMRG). Imagine we want to learn about trees, but studying a full-grown, 50-foot tall tree in the lab is too unwieldy. One idea is to keep the tree small, like a bonsai tree. DMRG is an algorithm which, like a bonsai gardener, prunes the wave function while preserving its most important components. It produces a compressed version of the wave function called a Matrix Product State (MPS). One issue with DMRG is that it doesn’t extend particularly well to 2D and 3D systems.

Screen Shot 2017-07-29 at 12.01.23 AM

Quantum Monte Carlo (QMC). Another way to study the concept of “tree” in a lab (bear with me on this metaphor) would be to study a bunch of leaf, seed, and bark samples. Quantum Monte Carlo algorithms do this with wave functions, taking “samples” of a wave function (pure states) and using the properties and frequencies of these samples to build a picture of the wave function as a whole. The difficulty with QMC is that it treats the wave function as a black box. We might ask, “how does flipping the spin of the third electron affect the total energy?” and QMC wouldn’t have much of a physical answer.

Brains \gg Brawn

Neural Quantum States (NQS). Some state spaces are far too large for even Monte Carlo to sample adequately. Suppose now we’re studying a forest full of different species of trees. If one type of tree vastly outnumbers the others, choosing samples from random trees isn’t an efficient way to map biodiversity. Somehow, we need to make the sampling process “smarter”. Last year, Google DeepMind used a technique called deep reinforcement learning to do just that – and achieved fame for defeating the world champion human Go player. A recent Science paper by Carleo and Troyer (2017) used the same technique to make QMC “smarter” and effectively compress wave functions with neural networks. This approach, called “Neural Quantum States (NQS)”, produced several state-of-the-art results.


The general idea of my thesis.

My thesis. My undergraduate thesis centered upon much the same idea. In fact, I had to abandon some of my initial work after reading the NQS paper. I then focused on using machine learning techniques to obtain MPS coefficients. Like Carleo and Troyer, I used neural networks to approximate  \psi . Unlike Carleo and Troyer, I trained my model to output a set of Matrix Product State coefficients which have physical meaning (MPS coefficients always correspond to a certain state and site, e.g. “spin up, electron number 3”).

Cool – but does it work?

Yes – for small systems. In my thesis, I considered a toy system of 4 spin-\frac{1}{2} particles interacting via the Heisenberg Hamiltonian. Solving this system is not difficult so I was able to focus on fitting the two disparate parts – machine learning and Matrix Product States – together.

Success! My model solved for ground states with arbitrary precision. Even more interestingly, I used it to automatically obtain MPS coefficients. Shown below, for example, is a visualization of my model’s coefficients for the GHZ state, compared with coefficients taken from the literature.

Screen Shot 2017-07-28 at 11.46.45 PM

A visual comparison of a 4-site Matrix Product State for the GHZ state a) listed in the literature b) obtained from my neural network model. Colored squares correspond to real-valued elements of 2×2 matrices.

Limitations. The careful reader might point out that, according to the schema of my model (above), I still have to write out the full wave function. To scale my model up, I instead trained it variationally over a subspace of the Hamiltonian (just as the authors of the NQS paper did). Results are decent for larger (10-20 particle) systems, but the training itself is still unstable. I’ll finish ironing out the details soon, so keep an eye on arXiv* :).

Outside the ivory tower


A quantum computer developed by Joint Quantum Institute, U. Maryland.

Quantum computing is a field that’s poised to take on commercial relevance. Taming the wave function is one of the big hurdles we need to clear before this happens. Hopefully my findings will have a small role to play in making this happen.

On a more personal note, thank you for reading about my work. As a recent undergrad, I’m still new to research and I’d love to hear constructive comments or criticisms. If you found this post interesting, check out my research blog.

*arXiv is an online library for electronic preprints of scientific papers

The sign problem(s)

The thirteen-month-old had mastered the word “dada” by the time I met her. Her parents were teaching her to communicate other concepts through sign language. Picture her, dark-haired and bibbed, in a high chair. Banana and mango slices litter the tray in front of her. More fruit litters the floor in front of the tray. The baby lifts her arms and flaps her hands.

Dada looks up from scrubbing the floor.

“Look,” he calls to Mummy, “she’s using sign language! All done.” He performs the gesture that his daughter seems to have aped: He raises his hands and rotates his forearms about his ulnas, axes perpendicular to the floor. “All done!”

The baby looks down, seizes another morsel, and stuffs it into her mouth.

“Never mind,” Dada amends. “You’re not done, are you?”

His daughter had a sign(-language) problem.


So does Dada, MIT professor Aram Harrow. Aram studies quantum information theory. His interests range from complexity to matrices, from resource theories to entropies. He’s blogged for The Quantum Pontiff, and he studies—including with IQIM postdoc Elizabeth Crossonthe quantum sign problem.

Imagine calculating properties of a chunk of fermionic quantum matter. The chunk consists of sites, each inhabited by one particle or by none. Translate as “no site can house more than one particle” the jargon “the particles are fermions.”

The chunk can have certain amounts of energy. Each amount E_j corresponds to some particle configuration indexed by j: If the system has some amount E_1 of energy, particles occupy certain sites and might not occupy others. If the system has a different amount E_2 \neq E_1 of energy, particles occupy different sites. A Hamiltonian, a mathematical object denoted by H, encodes the energies E_j and the configurations. We represent H with a matrix, a square grid of numbers.

Suppose that the chunk has a temperature T = \frac{ 1 }{ k_{\rm B} \beta }. We could calculate the system’s heat capacity, the energy required to raise the chunk’s temperature by one Kelvin. We could calculate the free energy, how much work the chunk could perform in powering a motor or lifting a weight. To calculate those properties, we calculate the system’s partition function, Z.

How? We would list the configurations j. With each configuration, we would associate the weight e^{ - \beta E_j }. We would sum the weights: Z = e^{ - \beta E_1 }  +  e^{ - \beta E_2}  +  \ldots  =  \sum_j e^{ - \beta E_j}.

Easier—like feeding a 13-month-old—said than done. Let N denote the number of qubits in the chunk. If N is large, the number of configurations is gigantic. Our computers can’t process so many configurations. This inability underlies quantum computing’s promise of speeding up certain calculations.

We don’t have quantum computers, and we can’t calculate Z. Can we  approximate Z?

Yes, if H “lacks the sign problem.” The math that models our system models also a classical system. If our system has D dimensions, the classical system has D+1 dimensions. Suppose, for example, that our sites form a line. The classical system forms a square.

We replace the weights e^{ - \beta E_j } with different weights—numbers formed from a matrix that represents H. If H lacks the sign problem, the new weights are nonnegative and behave like probabilities. Many mathematical tools suit probabilities. Aram and Elizabeth apply such tools to Z, here and here, as do many other researchers.

We call Hamiltonians that lack the sign problem “stoquastic,” which I think fanquastic.Stay tuned for a blog post about stoquasticity by Elizabeth.

What if H has the sign problem? The new weights can assume negative and nonreal values. The weights behave unlike probabilities; we can’t apply those tools. We find ourselves knee-deep in banana and mango chunks.

Mango chunks

Solutions to the sign problem remain elusive. Theorists keep trying to mitigate the problem, though. Aram, Elizabeth, and others are improving calculations of properties of sign-problem-free systems. One scientist-in-the-making has achieved a breakthrough: Aram’s daughter now rotates her hands upon finishing meals and when she wants to leave her car seat or stroller.

One sign problem down; one to go.


With gratitude to Aram’s family for its hospitality and to Elizabeth Crosson for sharing her expertise.

1For experts: A local Hamiltonian is stoquastic relative to the computational basis if each local term is represented, relative to the computational basis, by a matrix whose off-diagonal entries are real and nonpositive.

Entropy Avengers

As you already know if you read my rare (but highly refined!) blog samples, I have spent a big chunk of my professorial career teaching statistical mechanics. And if you teach statistical mechanics, there is pretty much one thing you obsess about: entropy.

So you can imagine my joy of finally seeing a fully anti-entropic superhero appearing on my facebook account (physics enthusiasts out there – the project is seeking support on Kickstarter):

Apart from the plug for Assa Auerbach’s project (which, for full disclosure, I have just supported), I would like to use this as an excuse to share my lessons about entropy. With the same level of seriousness. Here they are, in order of increasing entropy.

1. Cost of entropy. Entropy is always marketed as a very palpable thing. Disorder. In class, however, it is calculated via an enumeration of the ‘microscopic states of the system’. For an atomic gas I know how to calculate the entropy (throw me at the blackboard in the middle of the night, no problem. Bosons or Fermions – anytime!) But how can the concept be applied to our practical existence? I have a proposal:

Quantify entropy by the cost (in $’s) of cleaning up the mess!

Examples can be found at all scales. For anything household-related, we should use the H_k constant. H_k=$25/hour for my housekeeper. You break a glass – it takes about 10 minutes to clean. That puts the entropy of the wreckage at $4.17. Having a birthday party takes about 2 hours to clean up: $50 entropy.

Another insight which my combined experience as professor and parent has produced:

2. Conjecture: Babies are maximally efficient topological entropy machines. If you raised a 1 year-old you know exactly what I mean. You can at least guess why maximum efficiency. But why topological? A baby sauntering through the house leaves a string of destruction behind itself. The baby is a mess-creation string-operator! If you start lagging behind, doom will emerge – hence the maximum efficiency. By the way, the only strategy viable is to undo the damage as it happens. But this blog post is about entropy, not about parenting.

In fact, this allows us to establish a conversion of entropy measured in k_B units, to its, clearly more natural, measure in dollar units. A baby eats about 1000kCal/day=4200kJ/day. To fully deal with the consequences, we need a housekeeper to visit about once a week. 4200kJ/day times 7 days=29400 kJoules. These are consumed at T=300K. So an entropy of S=Q/T~100J/K, which is also S~6 \times 10^{24} (Q/k_B T) in dimensionless units, converts to S~$120, which is the cost of our weekly housekeeper visit. This gives a value of $ 10^{-23} per entropy of a two-level system. Quite a reasonable bang for the buck, don’t you think?

3. My conjecture (2) fails. The second law of thermodynamics is an inequality. Entropy \geq Q/T. Why does the conjecture fail? Babies are not ‘maximal’. Consider presidents. Consider the mess that the government can make. It is at the scale of trillions per year. $ 10^{12}. Using the rigorous conversion rule established above, this corresponds to 10^{35} two-level systems. Which happens to quite precisely match the combined number of electrons present in the human bodies of all our military personnel. But the mess, however, is created by very few individuals.

Given the large amounts of taxpayer money we dish out to deal with entropy in the world, Auerbach’s book is bound to make a big impact. In fact, maybe Max the demon would one day be nominated for the national medal of freedom, or at least be inducted into the National Academy of Sciences.

The world of hackers and secrets

I’m Evgeny Mozgunov, and some of you may remember my earlier posts on Quantum Frontiers. I’ve recently graduated with a PhD after 6 years in the quantum information group at Caltech. As I’m navigating the job market in quantum physics, it was only a matter of time before I got dragged into a race between startups. Those who can promise impressive quantum speedups for practical tasks get a lot of money from venture capitalists. Maybe there’s something about my mind and getting paid: when I’m paid to do something, I suddenly start coming up with solutions that never occurred to me while I was wandering around as a student. And this time, I’ve noticed a possibility of impressing the public with quantum speedups that nobody has ever used before.

Three former members of John Preskill’s group, Gorjan Alagic, Stacey Jeffery and Stephen Jordan, have already proposed this idea (Circuit Obfuscation Using Braids, p.10), but none of the startups seems to have picked it up. You only need a small quantum computer. Imagine you are in the audience. I ask you to come up with a number. Don’t tell it out loud: instead, write it on a secret piece of paper, and take a little time to do a few mathematical operations based on the number. Then announce the result of those operations. Once you are done, people will automatically be split into two categories. Those with access to a small quantum computer (like the one at IBM) will be able to put on a magic hat (the computer…) and recover your number. But the rest of the audience will be left in awe, with no clue as to how this is even possible. There’s nothing they could do to guess your number based only on the result you announced, unless you’re willing to wait for a few days and they have access to the world’s supercomputing powers.

So far I’ve described the general setting of encryption – a cipher is announced, the key to the cipher is destroyed, and only those who can break the code can decipher.  For instance, if RSA encryption is used for the magic show above, indeed only people with a big quantum computer will be able to recover the secret number. To complete my story, I need to describe what the result that you announce (the cipher) looks like:

A sequence of instructions for a small quantum computer that is equivalent to a simple instruction for spitting out your number. However, the announced sequence of instructions is obfuscated, such that you can’t just read off the number from it.

You really need to feed the sequence into a quantum computer, and see what it outputs. Obfuscation is more general than encryption, but here we’re going to use it as a method of encryption.

Alagic et al. taught us how to do something called obfuscation by compiling for a quantum computer: much like when you compile a .c file in your CS class, you can’t really understand the .out file. Of course you can just execute the .out file, but not if it describes a quantum circuit, unless you have access to a quantum computer. The proposed classical compiler turns either a classical or a quantum algorithm into a hard-to-read quantum circuit that looks like braidsBraid_1000.gif. Unfortunately, any obfuscation by compiling scheme has the problem that whoever understands the compiler well enough will be able to actually read the .out file (or notice a pattern in braids reduced to a compact “normal” form), and guess your number without resorting to a quantum computer. Surprisingly, even though Alagic et al.’s scheme doesn’t claim any protection under this attack, it still satisfies one of the theoretical definitions of obfuscation: if two people write two different sets of instructions to perform the same operation, and then each obfuscate their own set of instructions by a restricted set of tricks, then it should be impossible to tell from the end result which program was obtained by whom.


Theoretical obfuscation can be illustrated by these video game Nier cosplayers: when they put on their wig and blindfold, they look like the same person. The character named 2B is an android, whose body is disposable, and whose mind is a set of instructions stored on a server. Other characters try to hack her mind as the story progresses.

Quantum scientists can have their own little world of hackers and secrets, organized in the following way: some researchers present their obfuscated code outputting a secret message, and other researchers become hackers trying to break it. Thanks to another result by Alagic et al, we know that hard-to-break obfuscated circuits secure against classical computers exist. But we don’t know how the obfuscator that produces those worst-case instances reliably looks like, so a bit of crowdsourcing to find it is in order. It’s a free-for-all, where all tools and tricks are allowed. In fact, even you can enter! All you need to know is a universal gate set H,T = R(π/4),CNOT and good old matrix multiplication. Come up with a product of these matrices that multiplies to a bunch of X‘s (X=HT⁴H), but such that only you know on which qubits the X are applied. This code will spit out your secret bitstring on an input of all 0’es. Publish it and wait until some hacker breaks it!

Here’s mine, can anyone see what’s my secret bitstring?

Obfuscated circuit.png

One can run it on a 5 qubit quantum computer in less than 1ms. But if you try to multiply the corresponding 32×32 matrices on your laptop, it takes more than 1ms. Quantum speedup right there. Of course I didn’t prove that there’s no better way of finding out my secret than multiplying matrices. In fact, had I used only even powers of the matrix T in the picture above, then there is a classical algorithm available in open source (Aaronson, Gottesman) that recovers the number without having to multiply large matrices.

I’m in luck: startups and venture capitalists never cared about theoretical proofs, it only has to work until it fails. I think they should give millions to me instead of D-wave. Seriously, there’s plenty of applications for practical obfuscation, besides magic shows. One can set up a social network where posts are gibberish except for those who have a quantum computer (that would be a good conspiracy theory some years from now). One can verify when a private company claims to sell a small quantum computer.

I’d like to end on a more general note: small quantum computers are already faster than classical hardware at multiplying certain kinds of matrices. This has already been proven for a restricted class of quantum computers and a task called boson sampling. If there’s a competition in matrix multiplication somewhere in the world, we can already win.

Time capsule at the Dibner Library

The first time I met Lilla Vekerdy, she was holding a book.

“What’s that?” I asked.

“A second edition of Galileo’s Siderius nuncius. Here,” she added, thrusting the book into my hands. “Take it.”

So began my internship at the Smithsonian Institution’s Dibner Library for the History of Science and Technology.

Many people know the Smithsonian for its museums. The Smithsonian, they know, houses the ruby slippers worn by Dorothy in The Wizard of Oz. The Smithsonian houses planes constructed by Orville and Wilbur Wright, the dresses worn by First Ladies on presidential inauguration evenings, a space shuttle, and a Tyrannosaurus Rex skeleton. Smithsonian museums line the National Mall in Washington, D.C.—the United States’ front lawn—and march beyond.

Most people don’t know that the Smithsonian has 21 libraries.

Lilla heads the Smithsonian Libraries’ Special-Collections Department. She also directs a library tucked into a corner of the National Museum of American History. I interned at that library—the Dibner—in college. Images of Benjamin Franklin, of inventor Eli Whitney, and of astronomical instruments line the walls. The reading room contains styrofoam cushions on which scholars lay crumbling rare books. Lilla and the library’s technician, Morgan Aronson, find references for researchers, curate exhibitions, and introduce students to science history. They also care for the vault.

The vault. How I’d missed the vault.


A corner of the Dibner’s reading room and part of the vault

The vault contains manuscripts and books from the past ten centuries. We handle the items without gloves, which reduce our fingers’ sensitivities: Interpose gloves between yourself and a book, and you’ll raise your likelihood of ripping a page. A temperature of 65°F inhibits mold from growing. Redrot mars some leather bindings, though, and many crowns—tops of books’ spines—have collapsed. Aging carries hazards.

But what the ages have carried to the Dibner! We1 have a survey filled out by Einstein and a first edition of Newton’s Principia mathematica. We have Euclid’s Geometry in Latin, Arabic, and English, from between 1482 and 1847. We have a note, handwritten by quantum physicist Erwin Schödinger, about why students shouldn’t fear exams.

I returned to the Dibner one day this spring. Lilla and I fetched out manuscripts and books related to quantum physics and thermodynamics. “Hermann Weyl” labeled one folder.

Weyl contributed to physics and mathematics during the early 1900s. I first encountered his name when studying particle physics. The Dibner, we discovered, owns a proof for part of his 1928 book Gruppentheorie und Quantenmechanik. Weyl appears to have corrected a typed proof by hand. He’d handwritten also spin matrices.

Electrons have a property called “spin.” Spin resembles a property of yours, your position relative to the Earth’s center. We represent your position with three numbers: your latitude, your longitude, and your distance above the Earth’s surface. We represent electron spin with three blocks of numbers, three 2 \times 2 matrices. Today’s physicists write the matrices as2

S_x  = \begin{bmatrix}  0  &  1  \\  1  &  0  \end{bmatrix}  \, , \quad  S_y  = \begin{bmatrix}  0  &  -i  \\  i  &  0  \end{bmatrix}  \, , \quad \text{and} \quad  S_z  = \begin{bmatrix}  -1  &  0  \\  0  &  1  \end{bmatrix} \, .

We needn’t write these matrices. We could represent electron spin with different 2 \times 2 matrices, so long as the matrices obey certain properties. But most physicists choose the above matrices, in my experience. We call our choice “a convention.”

Weyl chose a different convention:

S_x  = \begin{bmatrix}  1  &  0  \\  0  &  -1  \end{bmatrix}  \, , \quad  S_y  = \begin{bmatrix}  0  &  1  \\  1  &  0  \end{bmatrix}  \, , \quad \text{and} \quad  S_z  = \begin{bmatrix}  0  &  i  \\  -i  &  0  \end{bmatrix} \, .

The difference surprised me. Perhaps it shouldn’t have: Conventions change. Approaches to quantum physics change. Weyl’s matrices differ from ours little: Permute our matrices and negate one matrix, and you recover Weyl’s.

But the electron-spin matrices play a role, in quantum physics, like the role played by T. Rex in paleontology exhibits: All quantum scientists recognize electron spin. We illustrate with electron spin in examples. Students memorize spin matrices in undergrad classes. Homework problems feature electron spin. Physicists have known of electron spin’s importance for decades. I didn’t expect such a bedrock to have changed its trappings.

How did scientists’ convention change? When did it? Why? Or did the convention not change—did Weyl’s contemporaries use today’s convention, and did Weyl stand out?

Weyl 2

A partially typed, partially handwritten, proof of a book by Hermann Weyl.

I intended to end this article with these questions. I sent a draft to John Preskill, proposing to post soon. But he took up the questions like a knight taking up arms.

Wolfgang Pauli, John emailed, appears to have written the matrices first. (Physicist call the matrices “Pauli matrices.”) A 1927 paper by Pauli contains the notation used today. Paul Dirac copied the notation in a 1928 paper, acknowledging Pauli. Weyl’s book appeared the same year. The following year, Weyl used Pauli’s notation in a paper.

No document we know of, apart from the Dibner proof, contains the Dibner-proof notation. Did the notation change between the proof-writing and publication? Does the Dibner hold the only anomalous electron-spin matrices? What accounts for the anomaly?

If you know, feel free to share. If you visit DC, drop Lilla and Morgan a line. Bring a research project. Bring a class. Bring zeal for the past. You might find yourself holding a time capsule by Galileo.

Lilla and me

Dibner librarian Lilla Vekerdy and a former intern

With thanks to Lilla and Morgan for their hospitality, time, curiosity, and expertise. With thanks to John for burrowing into the Pauli matrices’ history.

1I continue to count myself as part of the Dibner community. Part of me refuses to leave.

2I’ll omit factors of \hbar / 2 \, .

The power of information

Sara Imari Walker studies ants. Her entomologist colleague Gabriele Valentini cultivates ant swarms. Gabriele coaxes a swarm from its nest, hides the nest, and offers two alternative nests. Gabriele observe the ants’ responses, then analyzes their data with Sara.

Sara doesn’t usually study ants. She trained in physics, information theory, and astrobiology. (Astrobiology is the study of life; life’s origins; and conditions amenable to life, on Earth and anywhere else life may exist.) Sara analyzes how information reaches, propagates through, and manifests in the swarm.

Some ants inspect one nest; some, the other. Few ants encounter both choices. Yet most of the ants choose simultaneously. (How does Gabriele know when an ant chooses? Decided ants carry other ants toward the chosen nest. Undecided ants don’t.)

Gabriele and Sara plotted each ant’s status (decided or undecided) at each instant. All the ants’ lines start in the “undecided” region, high up in the graph. Most lines drop to the “decided” region together. Physicists call such dramatic, large-scale changes in many-particle systems “phase transitions.” The swarm transitions from the “undecided” phase to the “decided,” as moisture transitions from vapor to downpour.

Sara presentation

Sara versus the ants

Look from afar, and you’ll see evidence of a hive mind: The lines clump and slump together. Look more closely, and you’ll find lags between ants’ decisions. Gabriele and Sara grouped the ants according to their behaviors. Sara explained the grouping at a workshop this spring.

The green lines, she said, are undecided ants.

My stomach dropped like Gabriele and Sara’s ant lines.

People call data “cold” and “hard.” Critics lambast scientists for not appealing to emotions. Politicians weave anecdotes into their numbers, to convince audiences to care.

But when Sara spoke, I looked at her green lines and thought, “That’s me.”

I’ve blogged about my indecisiveness. Postdoc Ning Bao and I formulated a quantum voting scheme in which voters can superpose—form quantum combinations of—options. Usually, when John Preskill polls our research group, I abstain from voting. Politics, and questions like “Does building a quantum computer require only engineering or also science?”,1 have many facets. I want to view such questions from many angles, to pace around the questions as around a sculpture, to hear other onlookers, to test my impressions on them, and to cogitate before choosing.2 However many perspectives I’ve gathered, I’m missing others worth seeing. I commiserated with the green-line ants.


I first met Sara in the building behind the statue. Sara earned her PhD in Dartmouth College’s physics department, with Professor Marcelo Gleiser.

Sara presented about ants at a workshop hosted by the Beyond Center for Fundamental Concepts in Science at Arizona State University (ASU). The organizers, Paul Davies of Beyond and Andrew Briggs of Oxford, entitled the workshop “The Power of Information.” Participants represented information theory, thermodynamics and statistical mechanics, biology, and philosophy.

Paul and Andrew posed questions to guide us: What status does information have? Is information “a real thing” “out there in the world”? Or is information only a mental construct? What roles can information play in causation?

We paced around these questions as around a Chinese viewing stone. We sat on a bench in front of those questions, stared, debated, and cogitated. We taught each other about ants, artificial atoms, nanoscale machines, and models for information processing.


Chinese viewing stone in Yuyuan Garden in Shanghai

I wonder if I’ll acquire opinions about Paul and Andrew’s questions. Maybe I’ll meander from “undecided” to “decided” over a career. Maybe I’ll phase-transition like Sara’s ants. Maybe I’ll remain near the top of her diagram, a green holdout.

I know little about information’s power. But Sara’s plot revealed one power of information: Information can move us—from homeless to belonging, from ambivalent to decided, from a plot’s top to its bottom, from passive listener to finding yourself in a green curve.


With thanks to Sara Imari Walker, Paul Davies, Andrew Briggs, Katherine Smith, and the Beyond Center for their hospitality and thoughts.


1By “only engineering,” I mean not “merely engineering” pejoratively, but “engineering and no other discipline.”

2I feel compelled to perform these activities before choosing. I try to. Psychological experiments, however, suggest that I might decide before realizing that I’ve decided.

Modern Physics Education?

Being the physics department executive officer (on top of being a quantum physicist) makes me think a lot about our physics college program. It is exciting. We start with mechanics, and then go to electromagnetism (E&M) and relativity, then to quantum and statistical mechanics, and then to advanced mathematical methods, analytical mechanics and more E&M. The dessert is usually field theory, astrophysics and advanced lab. You can take some advanced courses, introducing condensed matter, quantum computation, particle theory, AMO, general relativity, nuclear physics, etc. By the time we are done with college, we definitely feel like we know a lot.

But in the end of all that, what do we know about modern physics? Certainly we all took a class called ‘modern physics’. Or should I say ‘”modern” physics’? Because, I’m guessing, the modern physics class heavily featured the Stern-Gerlach experiment (1922) and mentions of De-Broglie, Bohr, and Dirac quite often. Don’t get me wrong: great physics, and essential. But modern?

So what would be modern physics? What should we teach that does not predate 1960? By far the biggest development in my neck of the woods is easy access to computing power. Even I can run simulations for a Schroedinger equation (SE) with hundreds of sites and constantly driven. Even I can diagonalize a gigantic matrix that corresponds to a Mott-Hubbard model of 15 or maybe even 20 particles. What’s more, new approximate algorithms capture the many-body quantum dynamics, and ground states of chains with 100s of sites. These are the DMRG (density matrix renormalization group) and MPS (matrix product states) (see https://arxiv.org/abs/cond-mat/0409292 for a review of DMRG, and https://arxiv.org/pdf/1008.3477.pdf for a review of MPS, both by the inspiring Uli Schollwoeck).

Should we teach that? Isn’t it complicated? Yes and no. Respectively – not simultaneously. We should absolutely teach it. And no – it is really not complicated. That’s the point – it is simpler than Schroedinger’s equation! How do we teach it? I am not sure yet, but certainly there is a junior level time slot for computational quantum mechanics somewhere.

What else? Once we think about it, the flood gates open. Condensed matter just gave us a whole new paradigm for semi-conductors: topological insulators. Definitely need to teach that – and it is pure 21st century! Tough? Not at all, just solving SE on a lattice. Not tough? Well, maybe not trivial, but is it any tougher than finding the orbitals of Hydrogen? (at the risk of giving you nightmares, remember Laguerre polynomials? Oh – right – you won’t get any nightmares, because, most likely, you don’t remember!)

With that let me take a shot at the standard way that quantum mechanics is taught. Roughly a quantum class goes like this: wave-matter duality; SE; free particle; box; harmonic oscillator, spin, angular momentum, hydrogen atom. This is a good program for atomic physics, and possibly field theory. But by and large, this is the quantum mechanics of vacuum. What about quantum mechanics of matter? Is Feynman path integral really more important than electron waves in solids? All physics is beautiful. But can’t Feynman wait while we teach tight binding models?

And I’ll stop here, before I get started on hand-on labs, as well as the fragmented nature of our programs.

Question to you all out there: Suppose we go and modernize (no quotes) our physics program. What should we add? What should we take away? And we all agree – all physics is Beautiful! I’m sure I have my blind spots, so please comment!